BS EN 62321-5:2014 ## **BSI Standards Publication** # Determination of certain substances in electrotechnical products Part 5: Cadmium, lead and chromium in polymers and electronics and cadmium and lead in metals by AAS, AFS, ICP-OES and ICP-MS BS EN 62321-5:2014 BRITISH STANDARD #### **National foreword** This British Standard is the UK implementation of EN 62321-5:2014. It is identical to IEC 62321-5:2013. Together with BS EN 62321-1:2013, BS EN 62321-2:2014, BS EN 62321-3-1:2014, BS EN 62321-3-2:2014, BS EN 62321-4:2014, BS EN 62321-6, BS EN 62321-7-1, BS EN 62321-7-2 and BS EN 62321-8 it supersedes BS EN 62321:2009, which will be withdrawn upon publication of all parts of the BS EN 62321 series. The UK participation in its preparation was entrusted to Technical Committee GEL/111, Electrotechnical environment committee. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2014 Published by BSI Standards Limited 2014 ISBN 978 0 580 71850 2 ICS 13.020; 43.040.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2014. Amendments/corrigenda issued since publication Date Text affected #### **EUROPEAN STANDARD** #### EN 62321-5 ## NORME EUROPÉENNE EUROPÄISCHE NORM April 2014 ICS 13.020; 43.040.10 Supersedes EN 62321:2009 (partially) #### English version Determination of certain substances in electrotechnical products - Part 5: Cadmium, lead and chromium in polymers and electronics and cadmium and lead in metals by AAS, AFS, ICP-OES and ICP-MS (IEC 62321-5:2013) Détermination de certaines substances dans les produits électrotechniques - Partie 5: Du cadmium, du plomb et du chrome dans les polymères et les produits électroniques, du cadmium et du plomb dans les métaux par AAS, AFS, ICP-OES et ICP-MS (CEI 62321-5:2013) Verfahren zur Bestimmung von bestimmten Substanzen in Produkten der Elektrotechnik - Teil 5: Cadmium, Blei und Chrom in Polymeren und Elektronik und Cadmium und Blei in Metallen mit AAS, AFS, ICP-OES und ICP-MS (IEC 62321-5:2013) This European Standard was approved by CENELEC on 2013-11-15. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. ## **CENELEC** European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B - 1000 Brussels #### Foreword The text of document 111/297/FDIS, future edition 1 of IEC 62321-5, prepared by IEC/TC 111 "Environmental standardization for electrical and electronic products and systems" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62321-5:2014. The following dates are fixed: | • | latest date by which the document has | (dop) | 2014-10-25 | |---|--|-------|------------| | | to be implemented at national level by | | | | | publication of an identical national | | | | | standard or by endorsement | | | | • | latest date by which the national | (dow) | 2016-11-15 | | | standards conflicting with the | | | | | document have to be withdrawn | | | EN 62321-5:2014 is a partial replacement of EN 62321:2009, forming a structural revision and generally replacing Clauses 8 to 10, as well as Annexes F, G and H. Future parts in the EN 62321 series will gradually replace the corresponding clauses from EN 62321:2009. Until such time as all parts are published, however, EN 62321:2009 remains valid for those clauses not yet re-published as a separate part. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights. #### **Endorsement notice** The text of the International Standard IEC 62321-5:2013 was approved by CENELEC as a European Standard without any modification. # Annex ZA (normative) # Normative references to international publications with their corresponding European publications The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ${\sf NOTE}$ When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|---|--------------|-------------| | IEC 62321-1 | - | Determination of certain substances in electrotechnical products - Part 1: Introduction and overview | EN 62321-1 | - | | IEC 62321-2 | - | Determination of certain substances in electrotechnical products - Part 2: Disassembly, disjunction and mechanical sample preparation | EN 62321-2 | - | | IEC 62321-3-1 | - | Determination of certain substances in electrotechnical products - Part 3-1: Screening electrotechnical products for lead, mercury, cadmium, total chromium and total bromine using X-ray Fluorescence Spectrometry | EN 62321-3-1 | - | | ISO 3696 | - | Water for analytical laboratory use - Specification and test methods | EN ISO 3696 | - | | ISO 5961 | - | Water quality - Determination of cadmium by atomic absorption spectrometry | EN ISO 5961 | - | #### CONTENTS | INT | RODU | JCTION | | 6 | | | |-----|-----------|--|---|----|--|--| | 1 | Scope | | | | | | | 2 | Norm | native references8 | | | | | | 3 | Term | s, defini | tions and abbreviations | 8 | | | | | 3.1 | Terms | and definitions | 8 | | | | | 3.2 | Abbrev | iations | 9 | | | | 4 | Reag | ents | | 9 | | | | | 4.1 | Genera | l | 9 | | | | | 4.2 | Reager | nts | 9 | | | | 5 | Appa | Apparatus | | | | | | | 5.1 | Genera | l | 11 | | | | | 5.2 | Appara | tus | 12 | | | | 6 | Samp | oling | | 13 | | | | | 6.1 | Genera | l | 13 | | | | | 6.2 | Test po | ortion | 13 | | | | | | 6.2.1 | Polymers | 13 | | | | | | 6.2.2 | Metals | | | | | | | 6.2.3 | Electronics | | | | | 7 | Procedure | | | | | | | | 7.1 | • | rs | | | | | | | 7.1.1 | General | | | | | | | 7.1.2 | Dry ashing method | | | | | | | 7.1.3 | Acid digestion method | | | | | | 7.0 | 7.1.4 | Microwave digestion | | | | | | 7.2 | 7.2.1 | General | | | | | | | 7.2.1 | Common methods of sample digestion | | | | | | | 7.2.2 | Samples containing Zr, Hf, Ti, Ta, Nb or W | | | | | | | 7.2.4 | Samples containing Sn | | | | | | 7.3 | | nics | | | | | | | | General | | | | | | | 7.3.2 | Digestion with aqua regia | | | | | | | 7.3.3 | Microwave digestion | | | | | | 7.4 | Prepara | ation of reagent blank solution | 20 | | | | 8 | Calib | alibration2 | | | | | | | 8.1 | General | | | | | | | 8.2 | Preparation of the calibration solution | | | | | | | 8.3 | Development of the calibration curve | | | | | | | 8.4 | reaction of the contract th | | | | | | 9 | Calcu | ulation22 | | | | | | 10 | Preci | cision22 | | | | | | 11 | Quali | Quality control | | | | | | | 11.1 | Genera | l | 24 | | | | | 11.2 | Limits o | of detection (LOD) and limits of quantification (LOQ) | 25 | | | | Annex A (informative) Practical application of determination of Cd , Pb and Cr in polymers and electronics and Cd and Pb in metals by AAS, AFS, ICP-OES and ICP-MS | | |--|----| | Annex B (informative) Results of international interlaboratory study nos. 2 (IIS2) and 4A (IIS 4A) | 33 | | Bibliography | 36 | | Figure A.1 – Background correction | 31 | | Table 1 – Repeatability and reproducibility | 22 | | Table 2 – Acceptance criteria of items for the quality control | 24 | | Table 3 – Method detection limit = $t \times s_{n-1}$ | 26 | | Table A.1 – Spectral interferences for the wavelengths of Cd and Pb | 28 | | Table A.2 – Spectral interferences for the wavelengths of Cr | 29 | | Table A.3 – Examples of mass/charge (m/z) ratios | 30 | | Table A.4 – Examples of wavelengths for AAS | 30 | | Table A.5 – Examples of wavelengths for AFS | 31 | | Table A.6 – Program for microwave digestion of samples | 32 | | Table B.1 – Statistical data for AAS | 33 | | Table B.2 – Statistical data for AFS | 33 | | Table B.3 – Statistical data for ICP-OES | 34 | | Table B.4 – Statistical data for ICP-MS | 35 | #### INTRODUCTION The widespread use of electrotechnical products has drawn increased attention to their impact on the environment. In many countries this has resulted in the adaptation of regulations affecting wastes, substances and energy use of electrotechnical products. The use of certain substances (e.g. lead (Pb), cadmium (Cd) and polybrominated diphenyl ethers (PBDE's)) in electrotechnical products, is a source of concern in current and proposed regional legislation. The purpose of the IEC 62321 series is therefore to provide test methods that will allow the electrotechnical industry to determine the levels of certain substances of concern in electrotechnical products on a consistent global basis. WARNING – Persons using this International Standard should be familiar with normal laboratory practice. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions. # DETERMINATION OF CERTAIN SUBSTANCES IN ELECTROTECHNICAL PRODUCTS – Part 5: Cadmium, lead and chromium in polymers and electronics and cadmium and lead in metals by AAS, AFS, ICP-OES and ICP-MS #### 1 Scope This Part of IEC 62321 describes the test methods for lead, cadmium and chromium in polymers, metals and electronics by AAS, AFS, ICP-OES and ICP-MS. This standard specifies the determination of the levels of cadmium (Cd), lead (Pb) and chromium (Cr) in electrotechnical products. It covers three types of matrices: polymers/polymeric workpieces, metals and alloys and electronics. This standard refers to the sample as the object to be processed and measured. What the sample is or how to get to the sample is defined by the entity carrying out the tests. Further guidance on obtaining representative samples from finished electronic products to be tested for levels of regulated substances may be found in IEC 62321-2. It is noted that the selection and/or determination of the sample may affect the interpretation of the test results. This standard describes the use of four methods, namely AAS (atomic absorption spectrometry), AFS (atomic fluorescence spectrometry), ICP-OES (inductively coupled plasma optical emission spectrometry), and ICP-MS (inductively coupled plasma mass spectrometry) as well as several procedures for preparing the sample solution from which the most appropriate method of analysis can be selected by experts. As the hexavalent-Cr analysis is sometimes difficult to determine in polymers and electronics, this standard introduces the screening methods for chrome in polymers and electronics except from AFS. Chromium analysis provides information about the existence of hexavalent-Cr in materials. However, elemental analyses cannot selectively detect hexavalent-Cr; it determines the amount of Cr in all oxidation states in the samples. If Cr amounts exceed the hexavalent-Cr limit, testing for hexavalent-Cr should be performed. The test procedures described in this standard are intended to provide the highest level of accuracy and precision for concentrations of Pb, Cd and Cr that range, in the case of ICP-OES and AAS, from 10 mg/kg for Pb, Cd and Cr, in the case of ICP-MS, from 0,1 mg/kg for Pb and Cd in the case of AFS, the range is from 10 mg/kg for Pb and 1.5 mg/kg for Cd. The procedures are not limited for higher concentrations. This standard does not apply to materials containing polyfluorinated polymers because of their stability. If sulfuric acid is used in the analytical procedure, there is a risk of losing Pb, thus resulting in erroneously low values for this analyte. In addition, sulfuric acid and hydrofluoric acid are not suitable for determining Cd by AFS, because it disturbs the reduction of Cd. Limitations and risks occur due to the solution step of the sample, e.g. precipitation of the target or other elements may occur, in which case the residues have to be checked separately or dissolved by another method and then combined with the test sample solution.