Edition 2.0 2015-11 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Adjustable speed electrical power drive systems – Part 7-304: Generic interface and use of profiles for power drive systems – Mapping of profile type 4 to network technologies Entraînements électriques de puissance à vitesse variable – Partie 7-304: Interface générique et utilisation de profils pour les entraînements électriques de puissance – Mise en correspondance du profil de type 4 avec les technologies de réseaux # THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence. IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00 CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. #### IEC Catalogue - webstore.iec.ch/catalogue The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad ### IEC publications search - www.iec.ch/searchpub The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. # IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email. #### Electropedia - www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. ### IEC Glossary - std.iec.ch/glossary More than 60 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. # IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch. ### A propos de l'IEC La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées. ### A propos des publications IEC Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié. ### Catalogue IEC - webstore.iec.ch/catalogue Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad. # Recherche de publications IEC - www.iec.ch/searchpub La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées. ### IEC Just Published - webstore.iec.ch/justpublished Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email. ### Electropedia - www.electropedia.org Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient plus de 30 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 15 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne. ### Glossaire IEC - std.iec.ch/glossary Plus de 60 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC. ### Service Clients - webstore.iec.ch/csc Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch. Edition 2.0 2015-11 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Adjustable speed electrical power drive systems – Part 7-304: Generic interface and use of profiles for power drive systems – Mapping of profile type 4 to network technologies Entraînements électriques de puissance à vitesse variable – Partie 7-304: Interface générique et utilisation de profils pour les entraînements électriques de puissance – Mise en correspondance du profil de type 4 avec les technologies de réseaux INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 29.200; 35.100.05 ISBN 978-2-8322-2929-3 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. # CONTENTS | FC | FOREWORD6 | | | | | | |----|-----------|--|----|--|--|--| | IN | TRODU | JCTION | 8 | | | | | 1 | Scop | re | 12 | | | | | 2 | Norm | native references | 12 | | | | | 3 | Term | s, definitions and abbreviated terms | 12 | | | | | | 3.1 | Terms and definitions | 12 | | | | | | 3.2 | Abbreviated terms | | | | | | 4 | Gene | eral | 18 | | | | | 5 | Mapp | ping to CP16/1 (SERCOS I) and CP16/2 (SERCOS II) | 19 | | | | | | 5.1 | Reference to communication standards | | | | | | | 5.2 | Overview | | | | | | | 5.3 | Physical layer and topology | | | | | | | 5.4 | Synchronization mechanism | | | | | | | 5.4.1 | · | | | | | | | 5.4.2 | | | | | | | | 5.4.3 | - | | | | | | | 5.5 | Telegram contents | | | | | | | 5.5.1 | | | | | | | | 5.5.2 | | | | | | | | 5.5.3 | | | | | | | | 5.5.4 | | | | | | | | 5.5.5 | - | | | | | | | 5.6 | Non-cyclic data transfer | | | | | | | 5.7 | Real-time bits | 30 | | | | | | 5.7.1 | Functions of real time bits | 30 | | | | | | 5.7.2 | Allocation of real-time bits | 32 | | | | | | 5.7.3 | Possible cases | 32 | | | | | | 5.8 | Signal control word and signal status word | 35 | | | | | | 5.9 | Data container | 36 | | | | | | 5.10 | Drive shutdown functions | 38 | | | | | | 5.11 | Communication classes | 39 | | | | | | 5.11. | 1 General | 39 | | | | | | 5.11. | 2 Communication class A | 40 | | | | | | 5.11. | 3 Communication class B (Extended functions) | 42 | | | | | | 5.11. | 4 Communication class C (Additional functions) | 43 | | | | | | 5.11. | 5 Communication cycle time granularity | 44 | | | | | 6 | Марр | ping to CP16/3 (SERCOS III) | 44 | | | | | | 6.1 | Reference to communication standards | 44 | | | | | | 6.2 | Overview | 45 | | | | | | 6.3 | Physical layer and topology | 46 | | | | | | 6.4 | Synchronization mechanism and telegram content | 47 | | | | | | 6.5 | Non-cyclic data transfer | 47 | | | | | | 6.6 | Communication cycles | 48 | | | | | | 6.7 | Drive classes | 48 | | | | | | 6.7.1 | General | 48 | | | | | | 6.7.2 | Torque axis | 49 | | | | | | 6.7.3 | Velocity axis | 50 | |----|------------|--|----| | | 6.7.4 | Velocity axis with position feedback | 51 | | | 6.7.5 | Position axis | 53 | | | 6.7.6 | Positioning axis | 55 | | 7 | Марр | ing to EtherCAT | 57 | | | 7.1 | Reference to communication standards | 57 | | | 7.2 | Overview | 57 | | | 7.3 | SoE synchronization | 58 | | | 7.3.1 | General | 58 | | | 7.3.2 | CP16 Phase 0-2 | | | | 7.3.3 | CP16 Phase 3-4 | | | | 7.4 | SoE Application Layer Management | | | | 7.4.1 | EtherCAT State Machine and IEC 61784 CPF 16 State Machine | | | | 7.4.2 | Multiple drives | | | | 7.4.3 | IDN usage | | | | | SoE Process Data Mapping | | | | 7.6 | SoE Service Channel Services | | | | 7.6.1 | Overview | | | | 7.6.2 | SSC Read | | | | 7.6.3 | SSC Write | | | | 7.6.4 | SSC Procedure Commands | | | | 7.6.5 | SSC Slave Info | | | | 7.7
7.8 | SoE Coding general | | | | 7.8.1 | SSC Read | | | | 7.8.2 | SSC Write | | | | 7.8.3 | Notify SSC Command Execution request | | | | 7.8.4 | SSC Slave Info | | | Bi | | hy | | | | 3 - 1 | | | | Fi | gure 1 – | Structure of IEC 61800-7 | 11 | | Fi | gure 2 – | Topology | 22 | | Fi | gure 3 – | Validity of command values and feedback acquisition time in the PDSs | 23 | | | • | Synchronization of cycle times | | | | - | Synchronization of the control loops and the fine interpolator | | | | | AT configuration (example) | | | | _ | | | | | _ | Function of the real-time bits | | | | | Allocation of IDN ≠ 0 to the real-time bits | | | | _ | Allocation of IDN = 0 to the real-time bits | | | Fi | gure 10 | Allocation of IDN ≠ 0 to the real-time bits | 35 | | Fi | gure 11 | Configuration example of signal status word | 36 | | Fi | gure 12 | Data container configuration without acknowledge (slave) | 37 | | | _ | Data container configuration with acknowledge (slave) | | | | - | - Structure of communication classes | | | | | - Topology | | | | _ | – Topology
– Telegram sequence | | | | _ | - Telegram sequence | 47 | | | | | | | Figure 18 – ESM and IEC 61158-4-16 State Machine | 59 | |-------------------------------------------------------------------|----| | Figure 19 – Successful SSC Read sequence | 65 | | Figure 20 – Unsuccessful SSC Read sequence | 65 | | Figure 21 – Successful SSC Fragmented Read sequence | 66 | | Figure 22 – Successful SSC Write sequence | 69 | | Figure 23 – Unsuccessful SSC Write sequence | 69 | | Figure 24 – Successful SSC Fragmented Write sequence | 70 | | Figure 25 – Successful SSC Procedure Command sequence | 73 | | Figure 26 – Aborted SSC Procedure Command sequence | 74 | | Figure 27 – Slave Info sequence | 75 | | Table 1 – CP16/1 and CP16/2 feature summary | 19 | | Table 2 – Number of PDSs per network (examples) | 20 | | Table 3 – Communication Profile Interoperability within a network | 21 | | Table 4 – Typical operation data for cyclic transmission | 25 | | Table 5 – Typical data for non-cyclic transmission | 26 | | Table 6 – IDN for choice and parameterisation of telegrams | 27 | | Table 7 – Structure of standard telegram-0 | 27 | | Table 8 – Structure of standard telegram-1 | 27 | | Table 9 – Structure of standard telegram-2 | 27 | | Table 10 – Structure of standard telegram-3 | 28 | | Table 11 – Structure of standard telegram-4 | | | Table 12 – Structure of standard telegram-5 | 29 | | Table 13 – Structure of standard telegram-6 | | | Table 14 – IDN for configuration of MDT | 29 | | Table 15 – IDN for configuration of AT | 30 | | Table 16 – IDN for real-time bits | 31 | | Table 17 – Real-time bits assignment IDNs | 31 | | Table 18 – IDN for configuring control and status words | 35 | | Table 19 – Data containers IDN | 36 | | Table 20 - Ring configuration - Timing | 40 | | Table 21 - Ring configuration - Telegram configuration | 40 | | Table 22 - Ring configuration - Phase run-up | 41 | | Table 23 – Service channel protocol | 41 | | Table 24 – Information & diagnostics | 41 | | Table 25 – Communication class A settings | 42 | | Table 26 - Ring configuration - Telegram configuration | 42 | | Table 27 – Information & diagnostics | 43 | | Table 28 – Real-time control bits | | | Table 29 – Real-time status bits | 43 | | Table 30 – Communication class B settings | 43 | | Table 31 – CP16/3 features summary | | | Table 32 – Mandatory bit combinations of Drive control | 49 | | Table 33 – Mandatory bit combinations of Drive status | 49 | |---------------------------------------------------------|----| | Table 34 – Supported operation mode | 50 | | Table 35 – Supported torque/force scaling | 50 | | Table 36 – Supported operation mode | 51 | | Table 37 – Supported velocity scaling | 51 | | Table 38 – Supported operation mode | 52 | | Table 39 – Supported position polarity | 52 | | Table 40 – Supported velocity scaling | 53 | | Table 41 – Supported position scaling | 53 | | Table 42 – Supported operation mode | 54 | | Table 43 – Supported position polarity | 54 | | Table 44 – Supported velocity scaling | 54 | | Table 45 – Supported position scaling | 54 | | Table 46 – Supported torque/force scaling | 55 | | Table 47 – Supported operation mode | 56 | | Table 48 – Supported position polarity | 56 | | Table 49 – Supported velocity scaling | 56 | | Table 50 – Supported position scaling | 56 | | Table 51 – Supported torque/force scaling | 57 | | Table 52 – Supported acceleration scaling | 57 | | Table 53 – EtherCAT feature summary | 58 | | Table 54 – Number of PDSs per network (examples) | 58 | | Table 55 – Obsolete IDNs | 60 | | Table 56 - Changed IDNs | 61 | | Table 57 – Status word of drive | 62 | | Table 58 – Control word for drive | 63 | | Table 59 - Mapping of SSC services to EtherCAT services | 64 | | Table 60 – SSC Read service | 66 | | Table 61 – Read SSC Fragment service | 68 | | Table 62 – SSC Write service | 70 | | Table 63 – Write SSC Fragment service | | | Table 64 – Notify SSC Command Execution service | 74 | | Table 65 – SSC Slave Info service | 76 | | Table 66 – SoE Mailbox protocol | 77 | | Table 67 – SSC Read request | 79 | | Table 68 – SSC Read response | 80 | | Table 69 - Read SSC Fragment request | 81 | | Table 70 – SSC Write request | 83 | | Table 71 – SSC Write response | 85 | | Table 72 – Write SSC Fragment request | 86 | | Table 73 – Notify SSC Command Execution request | 88 | | Table 74 - Slave Info request | 80 | ### INTERNATIONAL ELECTROTECHNICAL COMMISSION # Part 7-304: Generic interface and use of profiles for power drive systems – Mapping of profile type 4 to network technologies ADJUSTABLE SPEED ELECTRICAL POWER DRIVE SYSTEMS - # **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61800-7-304 has been prepared by subcommittee SC 22G: Adjustable speed electric drive systems incorporating semiconductor power converters, of IEC technical committee TC 22: Power electronic systems and equipment. This second edition cancels and replaces the first edition published in 2007. This edition constitutes a technical revision. This edition includes the following significant technical change with respect to the previous edition: Update of mapping specification. The text of this standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 22G/314/FDIS | 22G/329/RVD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts of the IEC 61800 series, under the general title Adjustable speed electrical power drive systems, can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - reconfirmed. - withdrawn, - replaced by a revised edition, or - amended. IMPORTANT - The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. ### INTRODUCTION The IEC 61800 series is intended to provide a common set of specifications for adjustable speed electrical power drive systems. IEC 61800-7 specifies profiles for power drive systems (PDS) and their mapping to existing communication systems by use of a generic interface model. IEC 61800-7 describes a generic interface between control systems and power drive systems. This interface can be embedded in the control system. The control system itself can also be located in the drive (sometimes known as "smart drive" or "intelligent drive"). A variety of physical interfaces is available (analogue and digital inputs and outputs, serial and parallel interfaces, fieldbuses and networks). Profiles based on specific physical interfaces are already defined for some application areas (e.g. motion control) and some device classes (e.g. standard drives, positioner). The implementations of the associated drivers and application programmers interfaces are proprietary and vary widely. IEC 61800-7 defines a set of common drive control functions, parameters, and state machines or description of sequences of operation to be mapped to the drive profiles. IEC 61800-7 provides a way to access functions and data of a drive that is independent of the used drive profile and communication interface. The objective is a common drive model with generic functions and objects suitable to be mapped on different communication interfaces. This makes it possible to provide common implementations of motion control (or velocity control or drive control applications) in controllers without any specific knowledge of the drive implementation. There are several reasons to define a generic interface: # For a drive device manufacturer - less effort to support system integrators; - less effort to describe drive functions because of common terminology; - the selection of drives does not depend on availability of specific support; # For a control device manufacturer - no influence of bus technology; - easy device integration; - independent of a drive supplier; ### For a system integrator - less integration effort for devices; - only one understandable way of modeling; - independent of bus technology. Much effort is needed to design a motion control application with several different drives and a specific control system. The tasks to implement the system software and to understand the functional description of the individual components may exhaust the project resources. In some cases, the drives do not share the same physical interface. Some control devices just support a single interface which will not be supported by a specific drive. On the other hand, the functions and data structures are often specified with incompatibilities. This requires the system integrator to write special interfaces for the application software and this should not be his responsibility. Some applications need device exchangeability or integration of new devices in an existing configuration. They are faced with different incompatible solutions. The efforts to adapt a solution to a drive profile and to manufacturer specific extensions may be unacceptable. This will reduce the degree of freedom to select a device best suited for this application to the selection of the unit which will be available for a specific physical interface and supported by the controller. IEC 61800-7-1 is divided into a generic part and several annexes as shown in Figure 1. The drive profile types for CiA® 402¹, CIP Motion^{TM2}, PROFIdrive³ and SERCOS®⁴ are mapped to the generic interface in the corresponding annex. The annexes have been submitted by open international network or fieldbus organizations which are responsible for the content of the related annex and use of the related trade marks. The different profile types 1, 2, 3 and 4 are specified in IEC 61800-7-201, IEC 61800-7-202, IEC 61800-7-203 and IEC 61800-7-204. This part of IEC 61800-7 specifies how the profile type 4 (SERCOS®) is mapped to the network technologies SERCOS® and EtherCAT®⁵. ¹ CiA® 402 is a registered trade mark of CAN in Automation e.V. (CiA). This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the registered trade mark CiA® 402. Use of the registered trade mark CiA® 402 requires permission of CAN in Automation e.V. (CiA). ² CIP Motion™ is a trade mark of ODVA, Inc. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the trade mark CIP Motion™. Use of the trade mark CIP Motion™ requires permission of ODVA, Inc. PROFIdrive is a trade name of PROFIBUS & PROFINET International. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this profile does not require use of the trade name PROFIdrive. Use of the trade name PROFIdrive requires permission of PROFIBUS & PROFINET International. SERCOS® is a regsistered trade mark of SERCOS International e.V. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the registered trade mark SERCOS®. Use of the registered trade mark SERCOS® requires permission of the trade mark holder. ⁵ EtherCAT® is a registered trade mark of Beckhoff, Verl. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the registered trade mark EtherCAT®. Use of the registered trade mark EtherCAT® requires permission of the trade mark holder. IEC 61800-7-301, IEC 61800-7-302 and IEC 61800-7-303 specify how the profile types 1, 2 and 3 are mapped to different network technologies (such as CANopen®6, CC-Link IE® Field Network⁷, EPA™8, EtherCAT®, Ethernet Powerlink^{TM9}, DeviceNet^{TM10}, ControlNet^{TM11}, EtherNet/IP^{TM12}, PROFIBUS¹³ and PROFINET¹⁴). ⁶ CANopen® is a registered trade mark of CAN in Automation e.V. (CiA). This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the registered trade mark CANopen®. Use of the registered trade mark CANopen® requires permission of CAN in Automation e.V. (CiA). CANopen® is an acronym for Controller Area Network open and is used to refer to EN 50325-4. ⁷ CC-Link IE® Field Network is a registered trade mark of Mitsubishi Electric Corporation. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the registered trade mark CC-Link IE® Field Network. Use of the registered trade mark CC-Link IE® Field Network requires permission of Mitsubishi Electric Corporation. ⁸ EPA™ is a trade mark of SUPCON Group Co. Ltd. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the trade mark EPA™. Use of the trade mark EPA™ requires permission of the trade mark holder. Ethernet Powerlink™ is a trade mark of B&R, control of trade mark use is given to the non profit organization EPSG. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the trade mark Ethernet Powerlink™. Use of the trade mark Ethernet Powerlink™ requires permission of the trade mark holder. DeviceNet™ is a trade mark of ODVA, Inc. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the trade mark DeviceNet™. Use of the trade mark DeviceNet™ requires permission of ODVA, Inc. ¹¹ ControlNet™ is a trade mark of ODVA, Inc. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the trade mark ControlNet™. Use of the trade mark ControlNet™ requires permission of ODVA, Inc. ¹² EtherNet/IP™ is a trade mark of ODVA, Inc. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade mark holder or any of its products. Compliance to this profile does not require use of the trade mark EtherNet/IP™. Use of the trade mark EtherNet/IP™ requires permission of ODVA, Inc. PROFIBUS is a trade name of PROFIBUS &PROFINET International. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this profile does not require use of the trade name PROFIBUS. Use of the trade name PROFIBUS requires permission of PROFIBUS &PROFINET International. PROFINET is a trade name of PROFIBUS &PROFINET International. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this profile does not require use of the trade name PROFINET. Use of the trade name PROFINET requires permission of PROFIBUS &PROFINET International. IEC Figure 1 – Structure of IEC 61800-7 ### ADJUSTABLE SPEED ELECTRICAL POWER DRIVE SYSTEMS - # Part 7-304: Generic interface and use of profiles for power drive systems – Mapping of profile type 4 to network technologies ### 1 Scope This part of IEC 61800 specifies the mapping of the profile type 4 (SERCOS) specified in IEC 61800-7-204 onto different network technologies. - SERCOS I / II, see Clause 5, - SERCOS III, see Clause 6, - EtherCAT, see Clause 7. The functions specified in this part of IEC 61800-7 are not intended to ensure functional safety. This requires additional measures according to the relevant standards, agreements and laws. ### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 61158-2, Industrial communication networks – Fieldbus specifications – Part 2: Physical layer specification and service definition IEC 61158-4-16, Industrial communication networks – Fieldbus specifications – Part 4-16: Data-link layer protocol specification – Type 16 elements IEC 61158-5-16, Industrial communication networks — Fieldbus specifications — Part 5-16: Application layer service definition — Type 16 elements IEC 61491:2002, Electrical equipment of industrial machines – Serial data link for real-time communication between controls and drives IEC 61784-1, Industrial communication networks - Profiles - Part 1: Fieldbus profiles IEC 61784-2, Industrial communication networks – Profiles – Part 2: Additional fieldbus profiles for real-time networks based on ISO/IEC 8802-3 IEC 61800-7-204:2015, Adjustable speed electrical power drive systems – Part 7-204: Generic interface and use of profiles for power drive systems – Profile type 4 specification ISO/IEC/IEEE 8802-3:2014, Standard for Ethernet # 3 Terms, definitions and abbreviated terms # 3.1 Terms and definitions For the purposes of this document, the following terms and definitions apply.