BS EN IEC 62271-109:2019

BSI Standards Publication

High-voltage switchgear and controlgear

Part 109: Alternating-current series capacitor by-pass switches

National foreword

This British Standard is the UK implementation of EN IEC 62271-109:2019. It is identical to IEC 62271-109:2019. It supersedes BS EN 62271-109:2009+A1:2013, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PEL/17, High voltage switchgear, controlgear and assemblies.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2019 Published by BSI Standards Limited 2019

ISBN 978 0 580 51800 3

ICS 29.130.10

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2019.

Amendments/corrigenda issued since publication

Date

Text affected

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 62271-109

May 2019

ICS 29.130.10

Supersedes EN 62271-109:2009

English Version

High-voltage switchgear and controlgear - Part 109: Alternatingcurrent series capacitor by-pass switches (IEC 62271-109:2019)

Appareillage à haute tension - Partie 109: Interrupteurs de contournement pour condensateurs série à courant alternatif (IEC 62271-109:2019) Hochspannungs-Schaltgeräte und -Schaltanlagen - Teil 109: Wechselstrom-Überbrückungsschalter für Reihenkondensatoren (IEC 62271-109:2019)

This European Standard was approved by CENELEC on 2019-05-13. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

European foreword

The text of document 17A/1208/FDIS, future edition 3 of IEC 62271-109, prepared by SC 17A "Switching devices" of IEC/TC 17 "High-voltage switchgear and controlgear" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62271-109:2019.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2020-02-13 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2022-05-13 document have to be withdrawn

This document supersedes EN 62271-109:2009.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62271-109:2019 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60060-1:2010	NOTE	Harmonized as EN 60060-1:2010 (not modified)
IEC 60071-1	NOTE	Harmonized as EN 60071-1
IEC 60071-2	NOTE	Harmonized as EN IEC 60071-2
IEC 62271-200	NOTE	Harmonized as EN 62271-200
IEC 62271-203	NOTE	Harmonized as EN 62271-203
IEC 60296	NOTE	Harmonized as EN 60296
IEC 60529	NOTE	Harmonized as EN 60529

– 2 – IEC 62271-109:2019 © IEC 2019

CONTENTS

FC	DREWO	RD	9
1	Scop	e	.11
2	Norm	native references	.11
3	Term	s and definitions	. 12
	3.1	General terms and definitions	12
	3.2	Assemblies	
	3.3	Parts of assemblies	
	3.4	Switching devices	
	3.5	Parts of by-pass switches	
	3.6	Operational characteristics of by-pass switches	
	3.7	Characteristic quantities	
	3.8	Terms and definitions related to series capacitor banks	
	3.9	Index of definitions	
4		al and special service conditions	
5		gs	
5		General	
	5.1		
	5.2	Rated voltage (U_{Γ})	
	5.2.1		
	5.2.2	5 5 5	
	5.2.3	5 5	
	5.3	Rated insulation level (U_{p}, U_{d}, U_{s})	
	5.3.1 5.3.1		
	5.4	02 Rated insulation level across the by-pass switch (U_{pp} , U_{dp} , U_{sp}) Rated frequency (f_{Γ})	. 30
	5.4 5.5	Rated continuous current (I_r)	
	5.6	Rated short-time withstand current (I_k)	
	5.7		
	5.8	Rated peak withstand current (I_p) Rated duration of short-circuit (t_k)	
	5.9	Rated supply voltage of auxiliary and control circuits (U_a)	
	5.9 5.10	Rated supply voltage of auxiliary and control circuits (U_a)	
	5.10	Rated pressures of compressed gas supply for controlled pressure systems	
	5.101	Rated operating sequence	
	5.101	Rated by-pass making current (I_{BP})	
	5.102	Rated by-pass insertion current (I_{INS})	
	5.103	Rated reinsertion voltage (U_{INS})	
	5.105	Number of mechanical operations	
6		gn and construction	
0		Requirements for liquids in by-pass switches	
	6.1 6.2		
	6.3	Requirements for gases in by-pass switches Earthing of by-pass switches	
	6.4		
		Auxiliary and control equipment and circuits	
	6.4.1	General Protection against electrical shock	
	6.4.2 6.4.3	-	
	6.5	Dependent power operation	
	6.6	Stored energy operation	.43

	6.7	Inde	pendent unlatched operation (independent manual or power operation)	43
	6.8	Man	ually operated actuators	43
	6.9	Ope	ration of releases	43
	6.9.1		General	43
	6.9.2		Shunt closing releases	43
	6.9.3		Shunt opening releases	43
	6.9.4		Capacitor operation of shunt releases	44
	6.9.5		Under-voltage release	44
	6.9.1	01	Multiple releases	44
	6.9.1	02	Operation limits of releases	44
	6.9.1	03	Power consumption of releases	44
	6.10	Pres	sure/level indication	44
	6.10.	101	Low- and high-pressure interlocking devices	44
	6.11	Nam	eplates	44
	6.12	Lock	king devices	46
	6.13	Posi	tion indication	46
	6.14	Deg	rees of protection provided by enclosures	46
	6.15	Cree	epage distances for outdoor insulators	46
	6.16	Gas	and vacuum tightness	46
	6.17	Tigh	tness for liquid systems	46
	6.18	Fire	hazard (flammability)	46
	6.19	Elec	tromagnetic compatibility	46
	6.20	X-ra	y emission	46
	6.21	Corr	osion	46
	6.22	Fillir	ng levels for insulation, by-passing, insertion and/or operation	46
	6.101	Req	uirements for simultaneity within a pole	46
	6.102	Gen	eral requirement for operation	46
	6.103	Pres	sure limits of fluids for operation	47
	6.104	Ven	t outlets	47
	6.105	Time	e quantities	47
	6.106	Stat	ic mechanical loads	48
7			5	
	7.1	Gen	eral	48
	7.1.1		Basics	
	7.1.2		Information for identification of test objects	
	7.1.3		Information to be included in type test reports	
	7.1.1		Invalid tests	
	7.1.1		Type tests to repeat for by-pass switches with alternative operating	
	7.1.1	02	mechanisms	50
	7.2	Diel	ectric tests	50
	7.2.1		General	50
	7.2.2		Ambient air conditions during tests	50
	7.2.3		Wet test procedure	51
	7.2.4		Arrangement of the equipment	51
	7.2.5		Criteria to pass the test	51
	7.2.6		Application of test voltage and test conditions	51
	7.2.7		Tests of by-pass switches of $U_{re} \le$ 245 kV or $U_{rp} \le$ 245 kV	51
	7.2.8		Tests of by-pass switches of U_{re} > 245 kV or U_{rp} > 245 kV	52
	7.2.9		Artificial pollution tests for outdoor insulators	

- 4 -

IEC 62271-109:2019 © IEC 2019

7.2.2	10	Partial discharge tests	52
7.2.2	11	Dielectric tests on auxiliary and control circuits	53
7.2.2	12	Voltage test as condition check	53
7.3	Rad	io interference voltage (RIV) tests	54
7.4	Res	istance measurement	54
7.5	Con	tinuous current tests	55
7.5.2	1	Conditions of the test object	55
7.5.2	2	Arrangement of the equipment	55
7.5.3	3	Test current and duration	55
7.5.4	4	Temperature measurement during test	56
7.5.5	5	Resistance of the main circuit	56
7.5.6	6	Criteria to pass test	56
7.6	Sho	rt-time withstand current and peak withstand current tests	56
7.6.′	1	General	56
7.6.2	2	Arrangement of the by-pass switch and of the test circuit	56
7.6.3	3	Test current and duration	56
7.6.4	4	Condition of the by-pass switch after test	56
7.7	Veri	fication of the protection	56
7.7.1	1	Verification of the IP coding	56
7.7.2	2	Verification of the IK coding	56
7.8	Tigh	itness tests	56
7.9	Elec	tromagnetic compatibility tests (EMC)	56
7.9.1	1	Emission tests	56
7.9.2	2	Immunity tests on auxiliary and control circuits	57
7.9.3	3	Additional EMC tests on auxiliary and control circuits	57
7.10	Add	itional tests on auxiliary and control circuits	57
7.10	.1	General	57
7.10	.2	Functional tests	57
7.10	.3	Verification of the operational characteristics of auxiliary contacts	57
7.10	.4	Environmental tests	57
7.10	.5	Dielectric test	58
7.11	X-R	adiation test for vacuum interrupters	58
7.101	Mec	hanical and environmental tests	58
7.10	1.1	Miscellaneous provisions for mechanical and environmental tests	58
7.10	1.2	Mechanical operation test at ambient air temperature	60
7.10	1.3	Low and high temperature tests	62
7.10	1.4	Humidity test	68
7.10	1.5	Test to prove the operation under severe ice conditions	68
7.102	Mise	cellaneous provisions for by-pass making and insertion tests	68
7.10	2.1	General	
7.10	2.2	Number of test specimens	69
7.10	2.3	Arrangement of by-pass switch for tests	69
7.10	2.4	General considerations concerning testing methods	70
7.10	2.5	Synthetic tests	73
7.10	2.6	No-load operations before tests	73
7.10	2.7	Alternative operating mechanisms	73
7.10	2.8	Behaviour of by-pass switch during tests	74
7.10	2.9	Condition of by-pass switch after tests	74

IEC 62271-109:2019 © IEC 2019

7.103	By-pass making current test-duty and insertion current test-duty, sequence of tests	76
7.10		
7.10		
7.10		
7.10	•	
8 Rout	tine tests	88
8.1	General	88
8.2	Dielectric test on the main circuit	
8.3	Tests on auxiliary and control circuits	
8.3.1	Inspection of auxiliary and control circuits, and verification of conformity to circuit diagrams and wiring diagrams	90
8.3.2	2 Functional tests	90
8.3.3	3 Verification of protection against electrical shock	90
8.3.4	1 Dielectric tests	90
8.4	Measurement of the resistance of the main circuit	90
8.5	Tightness test	90
8.5.1	1 General	90
8.5.2	2 Controlled pressure systems for gas	90
8.5.3	Closed pressure systems for gas	91
8.5.4		
8.5.5	1 5	
8.6	Design and visual checks	
8.101	Mechanical operating tests	
	le to the selection of by-pass switches (informative)	
10 Infor	mation to be given with enquiries, tenders and orders (informative)	93
10.1	General	
10.2	Information with enquiries and orders	93
10.3	Information with tenders	
11 Tran	sport, storage, installation, operating instructions and maintenance	96
11.1	General	
11.2	Conditions during transport, storage and installation	
11.3	Installation	
11.4	Operating instruction	
11.5	Maintenance	
	1 Guide for commissioning tests	
	01.1 General	
	01.2 Commissioning checks and test programme	
	01.3 Resistors and capacitors (if applicable)	
	ity	
12.1	General	
12.2	Precautions by manufacturers	
12.3	Precautions by users	
	ence of the product on environment	
	(normative) Tolerances on test quantities during type tests	
	(normative) Records and reports of type tests	
B.1	Information and results to be recorded	
B.2	Information to be included in type test reports	108

IEC 622	271-109:2019 © IEC 2019	

B.2.1 General 108 B.2.2 Apparatus tested 108 B.2.3 Rated characteristics of by-pass switch, including its operating devices and auxiliary equipment. 108 B.2.4 Test conditions (for each series of tests; if applicable). 108 B.2.5 Short-time withstand current and peak withstand current test. 109 B.2.6 No-load operation 109 B.2.7 By-pass making current test-duty. 109 B.2.8 Insertion current test-duty. 109 B.2.9 Oscillographic and other records 110 Annex C (informative) (Void) 111 Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Open-close cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement 64 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with			
B.2.3 Rated characteristics of by-pass switch, including its operating devices and auxiliary equipment. 108 B.2.4 Test conditions (for each series of tests; if applicable) 108 B.2.5 Short-time withstand current and peak withstand current test 109 B.2.6 No-load operation 109 B.2.7 By-pass making current test-duty. 109 B.2.9 Oscillographic and other records 110 Annex C (informative) (Void) 111 Annex E (normative) Bx-pass switches used as the primary by-passing devices 119 Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 4 – By-pass switch – Open-close cycle 24 Figure 5 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more 16 han one separate by-pass units 71 Figure 8 – Typical test circuit for the by-pass making current test-duty </td <td></td> <td></td> <td></td>			
and auxiliary equipment		11	. 108
B.2.5 Short-time withstand current and peak withstand current test 109 B.2.6 No-load operation 109 B.2.7 By-pass making current test-duty 109 B.2.8 Insertion current test-duty 109 B.2.9 Oscillographic and other records 110 Annex C (informative) (Void) 111 Annex C (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex F (informative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 5 – By-pass switch – Open-close cycle 24 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass witches with more than one separate by-pass units 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical test circuit for the insertion current test-duty 82 Figure 13 – Oscillogram obtained from the typical test c			. 108
B.2.6 No-load operation 109 B.2.7 By-pass making current test-duty 109 B.2.8 Insertion current test-duty 109 B.2.9 Oscillographic and other records 110 Annex C (informative) (Void) 111 Annex D (informative) Bx-pass switches used as the primary by-passing devices 119 Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Close-open cycle 24 Figure 6 – Test sequences for low and high temperature tests 65 Figure 6 – Test sequences for low and high temperature tests 65 Figure 10 – Typical test circuit for the by-pass making current test-duty 77 Figure 10 – Typical LC test circuit for the insertion current test-duty 78 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 13 – Oscillogram obtained from the typical test circuit for the insertion current test-duty <t< td=""><td>B.2.4</td><td>Test conditions (for each series of tests; if applicable)</td><td>. 108</td></t<>	B.2.4	Test conditions (for each series of tests; if applicable)	. 108
B.2.7 By-pass making current test-duty 109 B.2.8 Insertion current test-duty 109 B.2.9 Oscillographic and other records 110 Annex C (informative) Examples of by-pass switch ratings 111 Annex D (informative) Examples of by-pass switch ratings 112 Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex F (informative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Open-close cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for	B.2.5	Short-time withstand current and peak withstand current test	. 109
B.2.8 Insertion current test-duty 109 B.2.9 Oscillographic and other records 110 Annex C (informative) (Void) 111 Annex C (informative) Explanatory note regarding recovery voltage during reinsertion 112 Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex F (informative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Open-close cycle 24 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 78 Figure 10 – Coscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 14 – Typical test circuit for the insertion current test-duty 84 Figure 14 – Typical component layout for by-pass switches used as the primary by-passin	B.2.6	•	
B 2.9 Oscillographic and other records 110 Annex C (informative) (Void) 111 Annex D (informative) Examples of by-pass switch ratings 112 Annex E (normative) By-pass switches used as the primary by-passing devices 119 Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 4 – By-pass switch – Open-close cycle 24 Figure 5 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more 71 figure 8 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 77 Figure 10 – Typical LC test circuit for the insertion current test-duty 82 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 83 Figure 12 – Typical test circuit for the insertion current test-duty 84 Figure 13 – Oscil			
Annex C (informative) (Void) 111 Annex D (informative) Examples of by-pass switch ratings. 112 Annex E (normative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Open-close cycle 24 Figure 5 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more 71 Figure 8 – Oscillogram obtained from the typical test circuit for the by-pass making 77 Figure 9 – Oscillogram obtained from the typical LC test circuit for the insertion 82 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion 83 Figure 12 – Typical test circuit for the insertion current test-duty 82 Figure 13 – Oscillogram obtained from the typical test circuit for the insertion 83 Figure 14 – Typical direc		•	
Annex D (informative) Examples of by-pass switch ratings. 112 Annex E (normative) By-pass switches used as the primary by-passing devices 119 Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Open-close cycle 24 Figure 6 – Test sequences for low and high temperature tests 64 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making 71 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 83 Figure 12 – Typical test circuit for the insertion current test-duty 83 Figure 13 – Oscillogram obtained from the typical test circ			
Annex E (normative) By-pass switches used as the primary by-passing devices 119 Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Open-close cycle 24 Figure 6 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 10 – Oscillogram obtained from the typical test circuit for the by-pass making 78 Figure 11 – Oscillogram obtained from the typical LC test circuit for high rated 83 Figure 12 – Typical Lest circuit for the insertion current test-duty 82 Figure 13 – Oscillogram obtained from the typical test circuit for the insertion 83 Figure 14 – Typical direct test circuit for the insertion current test-duty 84 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion 86 </td <td></td> <td></td> <td></td>			
Annex F (informative) Explanatory note regarding recovery voltage during reinsertion 121 Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Open-close cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement 64 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 77 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 13 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 84 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 84 </td <td>Annex D (infor</td> <td>mative) Examples of by-pass switch ratings</td> <td>. 112</td>	Annex D (infor	mative) Examples of by-pass switch ratings	. 112
Annex G (normative) Use of mechanical characteristics and related requirements 131 Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Close-open cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement 64 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more 65 figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical LC test circuit for the insertion current test-duty 81 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure 16 – Typical component layout for by-pass switches used	Annex E (norm	ative) By-pass switches used as the primary by-passing devices	. 119
Bibliography 134 Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Close-open cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 14 – Typical direct test circuit for the insertion current test-duty 86 Figu	Annex F (inforr	native) Explanatory note regarding recovery voltage during reinsertion	.121
Figure 1 – Different layouts for series capacitor banks 16 Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Close-open cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 84 Figure 16 – Reference mechanical travel cha	Annex G (norm	native) Use of mechanical characteristics and related requirements	.131
Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Close-open cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 77 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 86 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure F.1 – Typical exam	Bibliography		. 134
Figure 2 – By-pass switch – Opening and closing operations 23 Figure 3 – By-pass switch – Close-open cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 77 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 86 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure F.1 – Typical exam			
Figure 3 – By-pass switch – Close-open cycle 24 Figure 4 – By-pass switch – Open-close cycle 25 Figure 5 – Example of wind velocity measurement. 64 Figure 6 – Test sequences for low and high temperature tests. 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure 16 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. <	Figure 1 – Diffe	erent layouts for series capacitor banks	16
Figure 4 - By-pass switch - Open-close cycle 25 Figure 5 - Example of wind velocity measurement 64 Figure 6 - Test sequences for low and high temperature tests 65 Figure 7 - Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 8 - Typical test circuit for the by-pass making current test-duty 77 Figure 9 - Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 78 Figure 10 - Typical LC test circuit for the insertion current test-duty 81 Figure 11 - Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 - Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 - Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 - Typical direct test circuit for the insertion current test-duty 85 Figure 15 - Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 15 - Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 14 - Typical direct test circuit for the insertion current test-duty 86 Figure 15 - Oscillogram obtained from the typical direct test circuit for	Figure 2 – By-p	bass switch – Opening and closing operations	23
Figure 5 – Example of wind velocity measurement 64 Figure 6 – Test sequences for low and high temperature tests 65 Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more than one separate by-pass units 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure 5.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. 128	Figure 3 – By-p	bass switch – Close-open cycle	24
Figure 6 – Test sequences for low and high temperature tests	Figure 4 – By-p	bass switch – Open-close cycle	25
Figure 7 – Equivalent testing set-up for unit testing of by-pass switches with more 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion 82 Figure 12 – Typical test circuit for the insertion current test-duty 82 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 84 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure E.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low 128 Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a high 128 Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible 128	Figure 5 – Exa	mple of wind velocity measurement	64
than one separate by-pass units 71 Figure 8 – Typical test circuit for the by-pass making current test-duty 77 Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making current test-duty 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure E.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. 128 Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible 128	Figure 6 – Test	t sequences for low and high temperature tests	65
Figure 9 – Oscillogram obtained from the typical test circuit for the by-pass making 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure F.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. 128 Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a high compensation factor scheme (k = 0,5) and for a power swing of 1,8 p.u. 128 Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible 128			71
current test-duty 78 Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure E.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. 128 Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a high compensation factor scheme (k = 0,5) and for a power swing of 1,8 p.u. 128 Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible 128	Figure 8 – Typi	ical test circuit for the by-pass making current test-duty	77
Figure 10 – Typical LC test circuit for the insertion current test-duty 81 Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion 82 Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure E.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. 128 Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a high compensation factor scheme (k = 0,5) and for a power swing of 1,8 p.u. 128 Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible 128			78
Figure 11 – Oscillogram obtained from the typical LC test circuit for the insertion current test-duty82Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current)83Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty84Figure 14 – Typical direct test circuit for the insertion current test-duty85Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion 			
Figure 12 – Typical test circuit for the insertion current test-duty (mainly for high rated insertion current) 83 Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion current test-duty 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure E.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. 128 Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a high compensation factor scheme (k = 0,5) and for a power swing of 1,8 p.u. 128 Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible 128	Figure 11 – Os	cillogram obtained from the typical LC test circuit for the insertion	
Figure 13 – Oscillogram obtained from the typical test circuit shown in Figure 12 for the insertion current test-duty 84 Figure 14 – Typical direct test circuit for the insertion current test-duty 85 Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure E.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. 128 Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a high compensation factor scheme (k = 0,5) and for a power swing of 1,8 p.u. 128 Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible 128	Figure 12 – Ty	pical test circuit for the insertion current test-duty (mainly for high rated	
Figure 14 – Typical direct test circuit for the insertion current test-duty	Figure 13 – Os	cillogram obtained from the typical test circuit shown in Figure 12 for	
Figure 15 – Oscillogram obtained from the typical direct test circuit for the insertion 86 Figure 16 – Reference mechanical travel characteristics (idealized curve) 92 Figure E.1 – Typical component layout for by-pass switches used as the primary by-passing device 119 Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u. 128 Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a high compensation factor scheme (k = 0,5) and for a power swing of 1,8 p.u. 128 Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible 128		-	
current test-duty86Figure 16 – Reference mechanical travel characteristics (idealized curve)92Figure E.1 – Typical component layout for by-pass switches used as the primary by- passing device119Figure F.1 – Typical example of the reinsertion voltage across a by-switch for a low compensation factor scheme (k = 0,2) and for a power swing of 1,8 p.u.128Figure F.2 – Typical example of the reinsertion voltage across a by-switch for a high compensation factor scheme (k = 0,5) and for a power swing of 1,8 p.u.128Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible128			85
Figure E.1 – Typical component layout for by-pass switches used as the primary by- passing device			86
passing device	Figure 16 – Re	ference mechanical travel characteristics (idealized curve)	92
compensation factor scheme ($k = 0,2$) and for a power swing of 1,8 p.u			.119
compensation factor scheme ($k = 0,5$) and for a power swing of 1,8 p.u			. 128
Figure F.3 – Comparison of the calculated reinsertion voltage examples and possible			. 128
	Figure F.3 – Co	omparison of the calculated reinsertion voltage examples and possible	

- 6 -

IEC 62271-109:2019 © IEC 2019 - 7 -

Figure F.4 – Comparison of the calculated reinsertion voltage examples and possible testing envelopes for 60 Hz systems	129
Figure G.1 – Reference mechanical travel characteristics (idealized curve)	132
Figure G.2 – Reference mechanical travel characteristics (idealized curve) with the prescribed envelopes centered over the reference curve (± 5 %), contact separation in this example at time $t = 20$ ms	132
Figure G.3 – Reference mechanical travel characteristics (idealized curve) with the	
prescribed envelopes fully displaced upward from the reference curve $\binom{+10}{0}$ %, contact	
separation in this example at time <i>t</i> = 20 ms	133
Figure G.4 – Reference mechanical travel characteristics (idealized curve) with the	
prescribed envelopes fully displaced downward from the reference curve $\begin{pmatrix} 0 \\ -10 \end{pmatrix}$,	
contact separation in this example at time <i>t</i> = 20 ms	133
Table 1 – Number of mechanical operations	41
Table 2 – Nameplate information	45
Table 3 – Examples of static horizontal and vertical forces for static terminal load	48
Table 4 – Type tests	49
Table 5 – Invalid tests	
Table 6 – Number of operating sequences	61
Table 7 – Limits of supply voltage for closing and opening releases	69
Table 8 – Test procedures for by-pass making current tests	79
Table 9 – Application of voltage for dielectric test on the main circuit	88
Table 10 – Test voltage for partial discharge test	90
Table A.1 – Tolerances on test quantities for type tests (1 of 3)	105
Table D.1 – Typical ratings for a series capacitor bank by-pass switch – Cases 1 to 6	113
Table D.2 – Typical series capacitor bank by-pass switch ratings – Cases 7 to 12	115
Table D.3 – Typical series capacitor bank by-pass switch ratings – Cases 13 to 18	117
Table F.1 – Typical examples of reinsertion voltages for systems not having power swing nor emergency overload, I_{load} = 1,0 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 50 Hz	122
Table F.2 – Typical examples of reinsertion voltages for systems not having power	
swing but with an emergency overload, I_{load} = 1,2 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 50 Hz	122
Table F.3 – Typical examples of reinsertion voltages for systems not having power	
swing but with an emergency overload, I_{load} = 1,4 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 50 Hz	123
Table F.4 – Typical examples of reinsertion voltages for systems not having power	
swing but with an emergency overload, I_{load} = 1,6 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 50 Hz	123
Table F.5 – Typical examples of reinsertion voltages for systems having power swing, I_{load} = 1,8 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 50 Hz	123
Table F.6 – Typical examples of reinsertion voltages for systems having power swing, I_{load} = 2,0 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 50 Hz	124
Table F.7 – Typical examples of reinsertion voltages for systems having power swing, I_{load} = 2,3 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 50 Hz	124
Table F.8 – Typical examples of reinsertion voltages for systems having power swing, I_{load} = 2,5 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 50 Hz	124

- 8 - IEC 62271-109:2019 © IEC 2019

Table F.9 – Typical examples of reinsertion voltages for systems not having power swing nor emergency overload, $I_{load} = 1,0$ p.u.; $U_{PL} = 2,2$ p.u.; $\beta = 0,85$ and $f = 60$ Hz 125 Table F.10 – Typical examples of reinsertion voltages for systems not having power swing but with an emergency overload, $I_{load} = 1,2$ p.u.; $U_{PL} = 2,2$ p.u.; $\beta = 0,85$ and f = 60 Hz
Table F.11 – Typical examples of reinsertion voltages for systems not having power swing but with an emergency overload, I_{load} = 1,4 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 60 Hz
Table F.12 – Typical examples of reinsertion voltages for systems not having power swing but with an emergency overload, I_{load} = 1,6 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 60 Hz
Table F.13 – Typical examples of reinsertion voltages for systems having power swing, I_{load} = 1,8 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 60 Hz126
Table F.14 – Typical examples of reinsertion voltages for systems having power swing, I_{load} = 2,0 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 60 Hz126
Table F.15 – Typical examples of reinsertion voltages for systems having power swing, I_{load} = 2,3 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 60 Hz127
Table F.16 – Typical examples of reinsertion recovery voltages for systems having power swing, I_{load} = 2,5 p.u.; U_{PL} = 2,2 p.u.; β = 0,85 and f = 60 Hz

IEC 62271-109:2019 © IEC 2019

INTERNATIONAL ELECTROTECHNICAL COMMISSION

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR -

Part 109: Alternating-current series capacitor by-pass switches

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62271-109 has been prepared by subcommittee 17A: Switching devices, of IEC technical committee 17: High-voltage switchgear and controlgear.

This third edition cancels and replaces the second edition published in 2008 and Amendment 1:2013. This edition constitutes a technical revision.

This edition contains the following significant technical changes with respect to the previous edition:

- a) the document has been restructured according to edition 2.0 of IEC 62271-1;
- b) the rated voltage assignation across the by-pass switch has been aligned to the rule defined in IEC 60143-1;
- c) clarification has been given regarding rated continuous current of compensated and uncompensated line;
- d) some clarifications have been given following a loss of "suitable precautions";

– 10 – IEC 62271-109:2019 © IEC 2019

- e) as per Amendment 2 of IEC 62271-100, the section "Rated time quantities" has been moved to Clause 6 under "Time quantities";
- f) as per Amendment 2 of IEC 62271-100, the section "Test for static mechanical loads" have been moved to Clause 6 under "Static mechanical loads";
- g) additional rules have been introduced for vacuum interrupters during impulse tests;
- h) additional clarifications have been given regarding the number of reduced impulses during impulse tests;
- i) a wider tolerance on the current damping during by-pass making current test-duty has been introduced.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
17A/1208/FDIS	17A/1215/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62271 series can be found, under the general title *High-voltage switchgear and controlgear*, on the IEC website.

This standard is to be read in conjunction with IEC 62271-100:2008 with its Amendment 1:2012 and Amendment 2:2017, and IEC 62271-1:2017, to which it refers and which is applicable, unless otherwise specified in this standard. In order to simplify the indication of corresponding requirements, the same numbering of clauses and subclauses is used as in IEC 62271-1:2017. Amendments to these clauses and subclauses are given under the same references whilst additional subclauses are numbered from 101.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC 62271-109:2019 © IEC 2019 - 11 -

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 109: Alternating-current series capacitor by-pass switches

1 Scope

This part of IEC 62271 is applicable to AC series capacitor by-pass switches designed for outdoor installation and for operation at frequencies of 50 Hz and 60 Hz on systems having voltages above 52 kV.

It is only applicable to by-pass switches for use in three-phase systems.

This document is also applicable to the operating devices of by-pass switches and to their auxiliary equipment.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-151:2001, International Electrotechnical Vocabulary – Part 151: Electrical and magnetic devices

IEC 60050-436:1990, International Electrotechnical Vocabulary – Chapter 436: Power capacitors

IEC 60050-441:1984, International Electrotechnical Vocabulary – Chapter 441: Switchgear, controlgear and fuses

IEC 60050-614:2016, International Electrotechnical Vocabulary – Part 614: Generation, transmission and distribution of electricity – Operation

IEC 60060 (all parts), *High-voltage test techniques*

IEC 60137:2017, Insulated bushings for alternating voltages above 1000 V

IEC 60143-1:2015, Series capacitors for power systems – Part 1: General

IEC 60143-2:2012, Series capacitors for power systems – Part 2: Protective equipment for series capacitor banks

IEC 60270, High-voltage test techniques – Partial discharge measurements

IEC 60376, Specification of technical grade sulphur hexafluoride (SF₆) and complementary gases to be used in its mixtures for use in electrical equipment

IEC 60480, Guidelines for the checking and treatment of sulphur hexafluoride (SF_6) taken from electrical equipment and specification for its re-use