BSI Standards Publication # Determination of particle size distribution — Electrical sensing zone method Part 1: Aperture/orifice tube method BS ISO 13319-1:2021 BRITISH STANDARD # National foreword This British Standard is the UK implementation of ISO 13319-1:2021. It supersedes BS ISO 13319:2007, which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee LBI/37, Particle characterization including sieving. A list of organizations represented on this committee can be obtained on request to its committee manager. # **Contractual and legal considerations** This publication has been prepared in good faith, however no representation, warranty, assurance or undertaking (express or implied) is or will be made, and no responsibility or liability is or will be accepted by BSI in relation to the adequacy, accuracy, completeness or reasonableness of this publication. All and any such responsibility and liability is expressly disclaimed to the full extent permitted by the law. This publication is provided as is, and is to be used at the recipient's own risk. The recipient is advised to consider seeking professional guidance with respect to its use of this publication. This publication is not intended to constitute a contract. Users are responsible for its correct application. © The British Standards Institution 2021 Published by BSI Standards Limited 2021 ISBN 978 0 539 03744 9 ICS 19.120 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2021. # Amendments/corrigenda issued since publication Date Text affected BS ISO 13319-1:2021 # INTERNATIONAL STANDARD ISO 13319-1 First edition 2021-03 # Determination of particle size distribution — Electrical sensing zone method — # Part 1: # Aperture/orifice tube method Détermination de la distribution granulométrique — Méthode de détection de zones électrosensibles — Partie 1: Méthode d'ouverture/d'orifice du tube BS ISO 13319-1:2021 **ISO 13319-1:2021(E)** # **COPYRIGHT PROTECTED DOCUMENT** © ISO 2021 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Con | tents | i | Page | |-------|---|--|------| | Forew | ord | | v | | 1 | Scope | | 1 | | 2 | Norm | ative references | 1 | | 3 | | s and definitions | | | 4 | | ols | | | 5 | | iple | | | 6 | General operation | | | | | 6.1 | Response | | | | 6.2 | Size limits | | | | 6.3 | Effect of coincident particle passage | | | | 6.4
6.5 | Dead time | | | 7 | Repeatability and reproducibility of counts | | | | • | 7.1 | Instrument repeatability | 7 | | | 7.2 | Method reproducibility/intermediate precision | 8 | | 8 | - | itional procedures | | | | 8.1 | General | | | | 8.2
8.3 | Instrument location Linearity of the aperture/amplifier system | | | | 8.4 | Linearity of the counting system | | | | 8.5 | Choice of electrolyte solution | | | | | 8.5.1 General | | | | | 8.5.2 Special considerations for small apertures ($D < 50 \mu m$) | 9 | | | | 8.5.3 Special considerations for large apertures ($D > 400 \mu m$) | 9 | | | 8.6
8.7 | Preparation of electrolyte solution | 9 | | | | Recommended sampling, sample splitting, sample preparation and dispersion | | | | | 8.7.2 Method 1: Using a paste | | | | | 8.7.3 Method 2: Alternative method applicable to low-density particles of less | | | | | than 50 μm | | | | | 8.7.4 Suspensions and emulsions | | | | 8.8 | 8.7.5 Verification of the dispersion | | | | 8.9 | Clearing an aperture blockage | | | | 8.10 | Stability of dispersion | | | | 8.11 | Calibration | 12 | | | | 8.11.1 General | | | | | 8.11.2 Calibration procedure — microsphere calibration | | | 9 | _ | sis | | | 10 | Calcu | lation of results | 13 | | 11 | | ment qualification | | | | 11.1
11.2 | General Report | | | Annas | | ormative) Derivation of maximum count number to limit coincidence | | | | - | ormative) Fishbone diagram for method development | | | | | ormative) Calibration and control of frequently used apertures | | | | | | | | | | ormative) Mass integration method for calibration and mass balanceormative) Calibration for the measurement of porous and conductive particles | | | Anne | k ir. tillif(| nimative i Cambration for the measurement of borous and conductive particles | Zn | # BS ISO 13319-1:2021 **ISO 13319-1:2021(E)** | Annex F (informative) Technique using two (or more) apertures | 29 | | |--|-----|--| | Annex G (informative) Chi-squared test of the correctness of instrument operation or | | | | sample preparation | 31 | | | Bibliography | .33 | | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 24, *Particle characterization including sieving*, Subcommittee SC 4, *Particle characterization*. This first edition of ISO 13319-1 cancels and replaces ISO 13319:2007, which has been technically revised. The main changes compared to the previous edition are as follows: - a general update to reflect the needs of modern quality assurance; - the section on repeatability and inter system variation has been expanded; - many instruments of this type are under strict controls within the pharmaceutical and related industries, therefore a new annex has been prepared with details of the factors which should be considered when developing a validated method in this arena; - <u>Clause 10</u> now gives details of the exact parameters which should be reported, in order to present the method and the key parameters of the result. A list of all parts in the ISO 13319 series can be found on the ISO website. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. # Determination of particle size distribution — Electrical sensing zone method — # Part 1: # Aperture/orifice tube method # 1 Scope This document specifies the measurement of the size distribution of particles dispersed in an electrolyte solution using the electrical sensing zone method. This can include biologics such as cells, but also industrial particles such as carbon, cement, ceramic powders, metal powders, pigments and polymer powders. The method measures pulse heights and their relationship to particle volumes or diameters, and is applicable over the range (implementation dependant) from approximately 0,5 μm to above 1 mm. This document does not address the specific requirements of the measurement of specific materials. # 2 Normative references There are no normative references in this document. # 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ ### 3.1 #### dead time time during which the electronics are not able to detect particles due to the signal processing of a previous pulse ### 3.2 # aperture small diameter hole through which suspension is drawn ## 3.3 ### sensing zone volume of electrolyte solution within, and around, the aperture in which a particle is detected # 3.4 #### analysis volume volume of suspension that is analysed #### 3.5 ### size bin size interval to distinguish particle size for size distribution measurement