

IEC/TS 62396-4

Edition 1.0 2008-07

TECHNICAL SPECIFICATION

Process management for avionics – Atmospheric radiation effects – Part 4: Guidelines for designing with high voltage aircraft electronics and potential single event effects

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE

P

ICS 03.100.50; 31.020; 49.060

ISBN 2-8318-9934-6

CONTENTS

FΟ	DREWORD	3
INT	TRODUCTION	5
1	Scope	6
2	Normative references	6
3	Terms and definitions	6
4	Potential high voltage single event effects	6
5	Quantifying single event burnout in avionics for high voltage devices	
6	Relevant SEB data and applying it to avionics	
	6.1 SEB data from heavy ion testing is not relevant	
	6.2 SEB data from high energy neutron and proton testing	
	6.3 Calculating the SEB rate at aircraft altitudes	12
	6.4 Measurement of high voltage component radiation characteristics, EPICS	12
7	Conclusion	15
Bib	bliographybliography	16
	gure 1 – SEB cross sections measured in 400 V and 500 V MOSFETs for WNR eutron and proton beams	10
Fig	gure 2 – SEB cross sections measured in 1 000 V MOSFETs and 1 200 V IGBTs th WNR neutron and 200 MeV proton beams	
Fig	gure 3a – Application of EPICS to the measurement of radiation event induced narge	
Fig	gure 3b – Application of EPICS to the measurement of radiation event induced	
	gure 3 – Measurement of radiation event charge and current	
Fig	gure 4 – EPICS plot of 1 200 V diode numbers of events at currents taken at differently voltages for a neutron fluence of approximately 3.5×10^9 neutrons per cm ² easured at energies greater than 10 MeV	ent
Fig (56	gure 5 – EPICS plot of 1 200 V diode numbers of events at currents taken at 675 V 6 %) and 900 V (75 %) applied voltage (stress) demonstrating the difference etween low and high voltage stress – Fluence as per Figure 4	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROCESS MANAGEMENT FOR AVIONICS – ATMOSPHERIC RADIATION EFFECTS –

Part 4: Guidelines for designing with high voltage aircraft electronics and potential single event effects

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC 62396-4, which is a technical specification, has been prepared by IEC technical committee 107: Process management for avionics.

This standard cancels and replaces IEC/PAS 62396-4 published in 2007. This first edition constitutes a technical revision. It is to be read in conjunction with IEC/TS 62396-1.

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
107/81/DTS	107/88/RVC

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62396 series, under the general title *Process management for avionics – Atmospheric radiation effects*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard,
- reconfirmed;
- withdrawn;
- · replaced by a revised edition, or
- amended

A bilingual edition of this document may be issued at a later date.

INTRODUCTION

This industry-wide technical specification provides additional guidance to avionics systems designers, electronic equipment, component manufacturers and their customers about the single event effects produced in semiconductor devices operating at high voltage (nominally above 200 V) by atmospheric radiation. It expands on the information and guidance provided in IEC/TS 62396-1.

The internal elements of semiconductor devices operating at high applied voltage will be subject to high voltage stress. The incident radiation causes ionisation charge within the device, and the high voltage stress may cause a large increase (avalanche) in this charge, which may be destructive. Within this technical specification two effects are considered: single event burn-out, SEB, and single event gate rupture, SEGR.

PROCESS MANAGEMENT FOR AVIONICS – ATMOSPHERIC RADIATION EFFECTS –

Part 4: Guidelines for designing with high voltage aircraft electronics and potential single event effects

1 Scope

This technical specification is intended to provide guidance on atmospheric radiation effects on high voltage (nominally above 200 V) avionics electronics used in aircraft operating at altitudes up to 60 000 ft (18,3 km). It is intended to be used in conjunction with IEC/TS 62396-1. This specification defines the effects of that environment on high voltage electronics and provides design considerations for the accommodation of those effects within avionics systems.

This technical specification is intended to help aerospace equipment manufacturers and designers to standardise their approach to single event effects on high voltage avionics by providing guidance, leading to a standard methodology.

Details are given of the types of single event effects relevant to the operation of high voltage avionics electronics, methods of quantifying those effects, appropriate methods to assist design and methods to demonstrate the suitability of the electronics for the application.

2 Normative references

The following referenced documents are indispensable for the application of this document, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC/TS 62396-1, Process management for avionics – Atmospheric radiation effects – Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment