# Process Plant Tent Responses to Vapor Cloud Explosions—Results of the American Petroleum Institute Tent Testing Program

API TECHNICAL REPORT 756-1 SEPTEMBER 2014



# Process Plant Tent Responses to Vapor Cloud Explosions—Results of the American Petroleum Institute Tent Testing Program

#### **Downstream Segment**

API TECHNICAL REPORT 756-1 SEPTEMBER 2014

Prepared for API by: Raymond H. Bennett, P.E., Ph.D. Martin Goodrich, P.E. Brad Horn

Baker Engineering and Risk Consultants, Inc. 3330 Oakwell Court, Suite 100 San Antonio, TX 78218



### **Special Notes**

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

All rights reserved. No part of this work may be reproduced, translated, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, NW, Washington, DC 20005.

Copyright © 2014 American Petroleum Institute

### Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Suggested revisions are invited and should be submitted to the Director of Regulatory and Scientific Affairs, API, 1220 L Street, NW, Washington, DC 20005.

### NOTICE

Baker Engineering and Risk Consultants, Inc. (BakerRisk) made every reasonable effort to perform the work contained herein in a manner consistent with high professional standards.

The work was conducted on the basis of information made available by the client or others to BakerRisk. Neither BakerRisk nor any person acting on its behalf makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information provided. All observations, conclusions and recommendations contained herein are relevant only to the project, and should not be applied to any other facility or operation.

Any third party use of this Report or any information or conclusions contained therein shall be at the user's sole risk. Such use shall constitute an agreement by the user to release, defend and indemnify BakerRisk from and against any and all liability in connection therewith (including any liability for special, indirect, incidental or consequential damages), regardless of how such liability may arise.

BakerRisk regards the work that it has done as being advisory in nature. The responsibility for use and implementation of the conclusions and recommendations contained herein rests entirely with the client.

## EXECUTIVE SUMMARY

The American Petroleum Institute (API) contracted with Baker Engineering and Risk Consultants, Inc. (BakerRisk) to perform vapor cloud explosion (VCE) tests to determine the response of tents to the potential explosion hazards that may be present at refineries, petrochemical and chemical operations, and natural gas and other onshore process facilities covered by OSHA 29 *CFR* 1910.119. The testing was conducted to provide data for use by the API committee developing API Recommended Practice (RP) 756, "Management of Hazards Associated with Location of Process Plant Tents".

The tests were originally designed to serve multiple purposes:

- provide data on response of tents to a variety of blast loads ranging from 0.6 psi to 1.5 psi,
- identify the failure modes for different types of tents, and
- obtain data on tent response to support estimates on the vulnerability of tent occupants.

As the testing was performed, it became apparent that the tents being tested could withstand higher pressures than originally envisioned. The test program was therefore modified to accommodate the observed behavior. The development and modifications to the scope of the test program are discussed in the report. The following three series of tests were conducted.

- A Series Three types of non-wind rated tents were tested with the long side of the tents facing the blast source.
- B Series The same types of tents were rotated 90 degrees and retested at higher loads.
- C Series Three types of engineered tents (designed for 90 mph 3 second wind gusts) were tested at two different pressures.

Subsequent to the completion of the API-funded tests, BakerRisk performed two additional tests to evaluate the DLG performance, as internal research. The response of the tents in these internal research tests, including the response of contents added to the tents, is discussed in this report.

The Explosion Research Cooperative (ERC) participants voted to release the data from a series of shock tube tests performed under their sponsorship that addressed the potential for the contents of a tent to become airborne. The data, in term of object mass and velocity, are provided in this report.

This report presents data only and does not provide any summary or conclusions on the acceptability of a tent siting approach.

# **Table of Contents**

| E> | RECUTIVE SUMMARY                                 | I  |
|----|--------------------------------------------------|----|
| 1  | INTRODUCTION AND BACKGROUND                      | 1  |
| 2  | OVERVIEW AND DEVELOPMENT OF THE API TEST PROGRAM | 2  |
|    | 2.1 Originally Planned Test Matrix               | 2  |
|    | 2.2 Final Test Matrix                            | 4  |
|    | 2.3 Instrumentation and Camera Coverage          | 6  |
|    | 2.3.1 Instrumentation Locations                  | 6  |
|    | 2.3.2 Camera Coverage                            | 6  |
| 3  | A Series Tests                                   | 8  |
|    | 3.1 Tents Included                               | 8  |
|    | 3.2 Test Bed Layout                              | 8  |
|    | 3.3 Results of Test A02                          | 8  |
|    | 3.3.1 Test Pressures                             | 8  |
|    | 3.3.2 Tent Response                              | 13 |
|    | 3.4 Results of Test A03                          | 13 |
|    | 3.4.1 Test Pressures                             | 13 |
|    | 3.4.2 Tent Response                              | 13 |
|    | 3.5 Summary and Findings Test Series A           | 13 |
| 4  | B Series Tests                                   | 20 |
|    | 4.1 Tents Included                               | 20 |
|    | 4.2 Test Bed Layout                              | 20 |
|    | 4.3 Results of Test B01                          | 20 |
|    | 4.3.1 Pressures Measured                         | 20 |
|    | 4.3.2 Tent Response                              | 20 |
|    | 4.4 Results - Test B06                           | 30 |
|    | 4.4.1 Pressures Measured                         | 30 |
|    | 4.4.2 Tent Response                              | 30 |
|    | 4.5 Results Test B08                             | 41 |
|    | 4.5.1 Pressure Measured                          | 41 |

|   | 4.5.2 Tent Response                                             | 41 |
|---|-----------------------------------------------------------------|----|
|   | 4.6 Summary and Findings from Test Series B                     | 41 |
| 5 | C Series Tests                                                  | 50 |
|   | 5.1 Tents Included                                              | 50 |
|   | 5.2 Test C01 Test Bed Layout                                    | 54 |
|   | 5.3 Results – Test C01                                          | 54 |
|   | 5.3.1 Pressures Measured                                        | 54 |
|   | 5.3.2 Tent Response                                             | 54 |
|   | 5.4 Test C02 Test Bed Layout                                    | 66 |
|   | 5.5 Results of Test C2                                          | 67 |
|   | 5.5.1 Pressures Measured                                        | 67 |
|   | 5.5.2 Tent Responses                                            | 68 |
|   | 5.6 Summary and Findings of the C Series Tests                  | 68 |
| 6 | FOLLOW-ON TESTS PERFORMED BY BAKERRISK                          | 76 |
| 7 | RESULTS OF EXPLOSION RESEARCH COOPERATIVE TEST ON TENT CONTENTS | 79 |
|   | 7.1 Test Layouts                                                | 79 |
|   | 7.2 Results                                                     | 84 |
| 8 | SUMMARY OF ALL API TEST DATA                                    | 87 |

# ANNEXES

| Annex A. | Descriptions of Tents Tested                | A-1 |
|----------|---------------------------------------------|-----|
| Annex B. | Test Series A - Full Plots of Pressure Data | B-1 |
| Annex C. | Test Series B - Full Plots of Test Data     | C-1 |
| Annex D. | Test Series C - Full Plots of Test Data     | D-1 |

# LIST OF FIGURES

| Figure 1. VCE Deflagration Load Generator Test Rig                                          | 1  |
|---------------------------------------------------------------------------------------------|----|
| Figure 2. Typical Test Layout Showing Tent Locations                                        | 4  |
| Figure 3. Pressure Gauge Layout – Front View of Tent - Facing Explosion                     | 7  |
| Figure 4. Pressure Gage Layout – Side View of Tent                                          | 7  |
| Figure 5. Pole Tent with Sides                                                              | 9  |
| Figure 6. Light Framed Tent with Guy Wires                                                  | 9  |
| Figure 7. Pole Tent without Sides                                                           | 10 |
| Figure 8. Layout of Tents for Test Series A                                                 | 10 |
| Figure 9. Internal vs. External Pressure, Non-Wind Rated Pole Tent with Sides,<br>Test A02  | 12 |
| Figure 10. Internal vs. External Pressure, Non-Wind Rated Frame Tent, Test A02              | 12 |
| Figure 11. Internal vs. External Pressure, Non-Wind Rated Pole Tent with Sides,<br>Test A03 | 15 |
| Figure 12. Internal vs. External Pressure, Non-Wind Rated Frame Tent, Test A03              | 15 |
| Figure 13. Damage to Non-Wind Rated Pole Tent with Sides, Test A03                          | 16 |
| Figure 14. Rope to Wall Panel Connection, Non-Wind Rated Pole Tent w/ Sides,<br>Test A03    | 16 |
| Figure 15. Damage to Light Frame Tent, Test A03                                             | 17 |
| Figure 16. Damage to Hinge of Roof Frame Member, Light Frame Tent, Test A03                 | 17 |
| Figure 17. Deformations of Light Frame Tent, Test A03                                       | 18 |
| Figure 18. 3D Rendering of Deformed Light Frame Tent, Test A03                              | 19 |
| Figure 19. Layout of Tents for Test Series B                                                | 21 |
| Figure 20. Comparison of Internal and External Pressure – Tent B, Test B01                  | 23 |
| Figure 21. Pole Tent with Sides Post Test B01                                               | 23 |
| Figure 22. Interior of Pole Tent with Sides Test B01                                        | 24 |
| Figure 23. Light Frame Tent Post Test B01                                                   | 24 |
| Figure 24. Interior of Light Frame Tent Post-Test B01                                       | 25 |
| Figure 25. Pole Tent without Sides Post Test B01                                            | 25 |
| Figure 26. Deformations of Pole Tent with Sides Test B01                                    | 26 |
| Figure 27. Deformation of Light Frame Tent Test B01                                         | 27 |
| Figure 28. Deformations of Pole Tent without Sides Test B01                                 | 28 |
| Figure 29. 3D Rendering of Frame Deformations Test B01                                      | 29 |
| Figure 30. Comparison of Internal and External Pressure – Tent B, Test B06                  | 32 |
| Figure 31. Comparison of Internal and External Pressure – Tent C, Test B06                  | 32 |

| Figure 32. | Pole Tent with Sides Post Test B06                                        | 33 |
|------------|---------------------------------------------------------------------------|----|
| Figure 33. | Interior of Pole Tent with Sides Post-Test B06                            | 33 |
| Figure 34. | Rear of Light Frame Tent Post-Test B08                                    | 34 |
| Figure 35. | Exterior of Light Frame Tent Post-Test B06                                | 34 |
| Figure 36. | Interior of Light Frame Tent Post-Test B06                                | 35 |
| Figure 37. | Bent Frame on Light Frame Tent Post Test B06                              | 35 |
| Figure 38. | Pole Tent without Sides Post-Test B06                                     | 36 |
| Figure 39. | Deformations of Pole Tent with Sides Test B06                             | 37 |
| Figure 40. | Deformations of Light Frame Tent Test B06                                 | 38 |
| Figure 41. | Deformations of Pole Tent without Sides Test B06                          | 39 |
| Figure 42. | 3D Rendering of Light Frame Tent Deformations Test B06                    | 40 |
| Figure 43. | Comparison of Internal and External Pressure – Tent A, Test B08           | 43 |
| Figure 44. | Pole Tent with Sides Post-Test B08                                        | 43 |
| Figure 45. | Interior of Pole Tent with Sides Post-Test B08                            | 44 |
| Figure 46. | Light Frame Tent Post-Test B08                                            | 44 |
| Figure 47. | Interior of Light Frame Tent Post-Test B08                                | 45 |
| Figure 48. | Pole Tent without Sides Post-Test B08                                     | 45 |
| Figure 49. | Deformations of Pole Tent Test B08                                        | 46 |
| Figure 50. | Deformations of Light Frame Tent Test B08                                 | 47 |
| Figure 51. | Deformations of Pole Tent without Sides Test B08                          | 48 |
| Figure 52. | 3D Rendering of Light Frame Tent Test B08                                 | 49 |
| Figure 53. | Exterior View of 90 mph Pole Tent – Test Bed Location A Pre-Test          | 51 |
| Figure 54. | Internal View of 90 mph Rated Pole Tent Pre-Test                          | 51 |
| Figure 55. | External View of Moment Framed Tent Test Bed Location B Pre-Test          | 52 |
| Figure 56. | Internal View of Moment Framed Tent Showing Frames and Cross<br>Bracing   | 52 |
| Figure 57. | External View of 90 mph Light Framed Tent Test Bed Location C<br>Pre-Test | 53 |
| Figure 58. | Internal View of Light Framed Tent                                        | 53 |
| Figure 59. | Layout of Tents for Test C01                                              | 55 |
| Figure 60. | Pressure Gauge Layout – Test C01, C02 – Front View of Tent Facing         |    |
|            | Explosion                                                                 | 55 |
| Figure 61. | Front of Pole Tent – Test C01                                             | 57 |
| Figure 62. | Rear of Pole Tent Test C01                                                | 57 |
| Figure 63. | Damage to Connector at Top of Perimeter Pole                              | 58 |

| Figure 64. Example of Failed Connector at Top of Side Pole          | 58  |
|---------------------------------------------------------------------|-----|
| Figure 65. Deformations of Tent A – Test C01                        | 59  |
| Figure 66. Damage to Front of Framed Tent – Test C01                | 60  |
| Figure 67. Damage to Rear of Framed Tent – Test C01                 | 60  |
| Figure 68. Damage to Framing Joint – Test C01                       | 61  |
| Figure 69. Failed Bolted Connection of Framed Tent – Test C01       | 61  |
| Figure 70. Detail of Failed Horizontal Member – Test C01            | 62  |
| Figure 71. Deformations of Framed Tent – Test C01                   | 63  |
| Figure 72. Damage to Front of Light Framed Tent – Test C01          | 64  |
| Figure 73. Deformations of Light Framed Tent – Test C01             | 65  |
| Figure 74. Layout of Tents for Test C2                              | 66  |
| Figure 75. Damage to Pole Tent – Test C02                           | 69  |
| Figure 76. Bent Pole on Pole Tent – Test C02                        | 69  |
| Figure 77. Deformations of Pole Tent – Test C02                     | 70  |
| Figure 78. Damage to Side of Framed Tent – Test C2                  | 71  |
| Figure 79. Damage to Rear of Framed Tent – Test C02                 | 71  |
| Figure 80. Deformations of Framed Tent – Test C02                   | 72  |
| Figure 81. Damage to Light Framed Tent – Test C02                   | 73  |
| Figure 82. Bending of Side Frame – Test C02                         | 73  |
| Figure 83. Bending of Roof Frames – Test C02                        | 74  |
| Figure 84. Failure of Roof Frame Connector – Test C02               | 74  |
| Figure 85. Deformations of Light Framed Tent – Test C02             | 75  |
| Figure 86. Pre-Test Photo of Tent Contents                          | 77  |
| Figure 87. Close-up View of Materials on Table                      | 77  |
| Figure 88. Post Test View of Pole Tent Tent and Contents            | 78  |
| Figure 89. Damage to Pole Tent and Displacement of Table and Chairs | s78 |
| Figure 90. Test Layout A, Lunch Room with Plastic Table             | 79  |
| Figure 91. Test Layout A', Lunch Room with Wooden Table             | 81  |
| Figure 92. Test Layout B, Lunch Room with Plastic Table, Rotated    | 81  |
| Figure 93. Test Layout C, Lunch Room with Tall Standing Objects     | 82  |
| Figure 94. Test Layout D, Simulation of Welding Enclosure           | 82  |
| Figure 95. Test Layout E, Simulation of Warehouse                   | 83  |
| Figure 96. Test 1, Pre- and Post-Test Photographs                   | 85  |
| Figure 97. Test 2, Pre- and Post-Test Photographs                   | 85  |

| Figure 98. Test 3, Pre- and Post-Test Photographs             | .85  |
|---------------------------------------------------------------|------|
| Figure 99. Test 5, Pre- and Post-Test Photographs             | .86  |
| Figure 100. Test 6, Pre- and Post-Test Photographs            | .86  |
| Figure 101. Test 8, Pre- and Post-Test Photographs            | .86  |
| Figure 102. Test 9, Pre- and Post-Test Photographs            | . 87 |
| Figure 103. Test 10, Pre- and Post-Test Photographs           | .87  |
| Figure 104. All API Test Data Shown in Pressure-Impulse Space | .88  |

# LIST OF TABLES

| Table 1. Originally Planned Test Matrix                                   | 3  |
|---------------------------------------------------------------------------|----|
| Table 2. Final Test Matrix                                                | 5  |
| Table 3. Peak Pressures and Positive Phase Impulses Recorded for Test A02 | 11 |
| Table 4. Peak Pressures and Positive Phase Impulses Recorded for Test A03 | 14 |
| Table 5. Peak Pressures and Positive Phase Impulses Recorded for Test B01 | 22 |
| Table 6. Peak Pressures and Positive Phase Impulses Recorded for Test B06 | 31 |
| Table 7. Peak Pressures and Positive Phase Impulses Recorded for Test B08 | 42 |
| Table 8. Peak Pressures and Positive Phase Impulses Recorded for Test C01 | 56 |
| Table 9. Peak Pressures and Positive Phase Impulses Recorded for Test C02 | 67 |
| Table 10. Summary of Mass and Velocity for Selected Items                 | 84 |

# Process Plant Tent Responses To Vapor Cloud Explosions—Results Of The American Petroleum Institute Tent TestingProgram

## **1** INTRODUCTION AND BACKGROUND

The American Petroleum Institute (API) contracted with Baker Engineering and Risk Consultants, Inc. (BakerRisk) to perform vapor cloud explosion (VCE) tests to determine the response of tents to the potential explosion hazards that may be present at refineries, petrochemical and chemical operations, natural gas and other onshore process facilities covered by OSHA 29 *CFR* 1910.119. The testing was conducted to provide data for use by the API committee developing API Recommended Practice (RP) 756, "Management of Hazards Associated with Location of Process Plant Tents".

BakerRisk designed and constructed the Deflagration Load Generator (DLG) test rig used for these tests. The test rig measures 48 ft. long by 24 ft. deep by 12 ft. tall and has three rigid walls, a rigid roof and floor, and one open wall facing the structure being tested, as shown in Figure 1. The interior of the rig is fitted with congestion. The test rig is filled with a propane/air mixture and ignited, causing a VCE.



Figure 1. VCE Deflagration Load Generator Test Rig

The specific test environment is controlled through selection of fuel concentration, obstacle geometry, and the distance between the test article and the VCE test rig. The tests were deflagrations with moderate flame speeds such that the wave shape of the blast load would include a rise time to the peak pressure. This type of VCE is representative of typical accidental VCEs at industrial facilities.

The VCE deflagrations are set to vent outside the test rig, toward the test articles. The tents were placed at a sufficient range from the test rig such that three test articles could be tested simultaneously on each shot. The test rig was configured such that the blast loading on the tent could be changed by varying the fuel concentration rather than relocating the test articles.

The tests were originally designed to serve multiple purposes: