American Nuclear Society

nuclear analysis and design of concrete radiation shielding for nuclear power plants

an American National Standard

REAFFIRMED

August 5, 2021 August 4, 2016 ANSI/ANS-6.4-2006; R2021 This standard has been reviewed and reaffirmed with the recognition that it may reference other standards and documents that may have been superseded or withdrawn. The requirements of this document will be met by using the version of the standards and documents referenced herein. It is the responsibility of the user to review each of the references and to determine whether the use of the original references or more recent versions is appropriate for the facility. Variations from the standards and documents referenced in this standard should be evaluated and documented. This standard does not necessarily reflect recent industry initiatives for risk informed decision-making or a graded approach to quality assurance. Users should consider the use of these industry initiatives in the application of this standard.

published by the American Nuclear Society 555 North Kensington Avenue La Grange Park, Illinois 60526 USA

ANSI/ANS-6.4-2006

American National Standard Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants

Secretariat American Nuclear Society

Prepared by the American Nuclear Society Standards Committee Working Group ANS-6.4

Published by the American Nuclear Society 555 North Kensington Avenue La Grange Park, Illinois 60526 USA

Approved September 29, 2006 by the American National Standards Institute, Inc.

American National Standard

Designation of this document as an American National Standard attests that the principles of openness and due process have been followed in the approval procedure and that a consensus of those directly and materially affected by the standard has been achieved.

This standard was developed under procedures of the Standards Committee of the American Nuclear Society; these procedures are accredited by the American National Standards Institute, Inc., as meeting the criteria for American National Standards. The consensus committee that approved the standard was balanced to ensure that competent, concerned, and varied interests have had an opportunity to participate.

An American National Standard is intended to aid industry, consumers, governmental agencies, and general interest groups. Its use is entirely voluntary. The existence of an American National Standard, in and of itself, does not preclude anyone from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard.

By publication of this standard, the American Nuclear Society does not insure anyone utilizing the standard against liability allegedly arising from or after its use. The content of this standard reflects acceptable practice at the time of its approval and publication. Changes, if any, occurring through developments in the state of the art, may be considered at the time that the standard is subjected to periodic review. It may be reaffirmed, revised, or withdrawn at any time in accordance with established procedures. Users of this standard are cautioned to determine the validity of copies in their possession and to establish that they are of the latest issue.

The American Nuclear Society accepts no responsibility for interpretations of this standard made by any individual or by any ad hoc group of individuals. Requests for interpretation should be sent to the Standards Department at Society Headquarters. Action will be taken to provide appropriate response in accordance with established procedures that ensure consensus on the interpretation.

Comments on this standard are encouraged and should be sent to Society Headquarters.

Published by

American Nuclear Society 555 North Kensington Avenue La Grange Park, Illinois 60526 USA

Copyright © 2006 by American Nuclear Society. All rights reserved.

Any part of this standard may be quoted. Credit lines should read "Extracted from American National Standard ANSI/ANS-6.4-2006 with permission of the publisher, the American Nuclear Society." Reproduction prohibited under copyright convention unless written permission is granted by the American Nuclear Society.

Printed in the United States of America

Foreword (This Foreword is not a part of American National Standard "Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants," ANSI/ANS-6.4-2006.)

The need for this standard was identified in mid-1972 by D. K. Trubey, then chairman of Subcommittee ANS-6, Radiation Protection and Shielding. The thenexisting standard, ANSI N101.6-1972, "Concrete Radiation Shields," provided excellent guidance on the construction of concrete radiation shielding structures but contained almost no information on shielding effectiveness or analysis. This standard was first issued as ANSI/ANS-6.4-1977 (N403).

After ANSI/ANS-6.4-1977 was issued, two significant events occurred that led to the decision to revise the standard: ANSI N101.6-1972 was withdrawn by ANSI, and the American Concrete Institute (ACI) issued its standard ACI 349-80, "Code Requirements for Nuclear Safety Related Concrete Structures," as well as the Commentary ACI 349R-80, which provided updated requirements with regard to the construction aspects of concrete shielding structures. The withdrawal of ANSI N101.6-1972; the guidance provided by ACI 349-80; and advances in the evolution of shielding methods, data, and applications led to the revision, ANSI/ANS-6.4-1985.

Since that revision effort, advances in buildup factors prompted the revision ANSI/ANS-6.4-1997. Other advances, particularly with respect to transmission and reflection of gamma rays and neutrons by concrete slabs, prompted the current revision, ANSI/ANS-6.4-2006.

This revised standard is meant to be a "guide to good practice" in the area of concrete shielding analysis and design. Recommendations are given where possible, but more often the choice of analytical methods must be left to the discretion of the shielding engineer as appropriate to the particular job, whether it be a conceptual design or final construction drawing.

This standard was revised by Working Group ANS-6.4 of the American Nuclear Society, which had the following members at the time it prepared and approved this standard:

R. E. Faw (Chair), Individual

- R. J. Donahue, Lawrence Berkeley National Laboratory
- C. C. Graham, AmerenUE Callaway Plant
- S. J. Haynes, Sandia National Laboratories
- T. M. Lloyd, EnergySolutions
- J. D. Olson, Black & Veatch Corporation
- J. K. Shultis, Kansas State University
- R. W. Roussin, Individual
- J. K. Warkentin, Individual

Subcommittee ANS-6, Radiation Protection and Shielding, had the following membership at the time of its approval of this standard:

W. C. Hopkins (Chair), Individual

- F. A. Alpan, Westinghouse Electric Company
- J. Tanner, Pacific Northwest National Laboratory
- R. E. Faw, Individual
- J. C. Wagner, Oak Ridge National Laboratory
- R. M. Westfall, Oak Ridge National Laboratory
- T. M. Raby, National Institute of Standards and Technology
- N. Hertel, Georgia Institute of Technology

Consensus Committee N-17, Research Reactors, Reactor Physics, Radiation Shielding, and Computational Methods, had the following membership at the time it reviewed and approved this standard:

- T. M. Raby (Chair) National Institute of Standards and Technology
- A. Weitzberg (Vice Chair), Individual
- W. H. Bell, American Institute of Chemical Engineers
- (Alt. R. D. Zimmerman, American Institute of Chemical Engineers)
- R. E. Carter, Individual
- D. Cokinos, Brookhaven National Laboratory
- B. Dodd, Health Physics Society
- B. K. Grimes, Individual
- N. Hertel, Georgia Institute of Technology
- W. A. Holt, Individual
- W. C. Hopkins, Individual
- M. A. Hutmaker, U.S. Department of Energy
- L. I. Kopp, Individual P. M. Madden, U.S. Nuclear Regulatory Commission Alt. A. Adams, U.S. Nuclear Regulatory Commission)
- J. F. Miller, James F. Miller Consulting Services J. E. Olhoeft, Individual
- W. J. Richards, National Institute of Standards and Technology T. R. Schmidt, Sandia National Laboratories
- A. O. Smetana, Savannah River National Laboratory
- R. Tsukumura, Aerotest Operations
- S. H. Weiss, National Institute of Standards and Technology
- Alt. Thomas J. Myers, National Institute of Standards and Technology)
- W. L. Whittemore, General Atomics

Contents Section

Page

1	Scope	1			
2	Requirements and recommendations	1			
	2.1 Conformance	1			
	2.2 Requirements	1			
	2.3 Recommendations	2			
3	Standards of documentation	4			
	3.1 Shield design approach	4			
	3.2 Shield design description	4			
	3.3 Methods of analysis	4			
	3.4 Description of analyses	4			
	3.5 References	4			
	3.6 Summary results	4			
4	Terms and definitions	4			
5	Characterization of concrete	6			
0	5.1 Introduction	6			
	5.2 Concrete placement	7			
	5.2 Concrete placement	7			
	5.5 Water content	1			
	5.4 Heating effects	8			
	5.5 Reinforcing steel	8			
	5.6 Aggregates	8			
6	Calculation methods	10			
	6.1 Introduction	10			
	6.2 Point-kernel methods	10			
	6.3 Discrete ordinates method	13			
	6.4 Monte Carlo method	16			
	6.5 Other methods and summary	18			
	o.o other monious and summary	10			
7	Concrete shielding data	18			
	7.1 Introduction	18			
	7.2 Gamma-ray attenuation coefficients	19			
	7.3 Gamma-ray buildup factors	19			
	7.4 Secondary-gamma-ray production	20			
	7.5 Neutron cross sections	20			
	7.6 Neutron attenuation curves	21			
8	Applications	21			
	8.1 Radiation effects	21			
	8.2 Minimum water content	22			
	8.3 Bulk shielding	23			
	8.4 Radiation streaming through penetrations	25			
	8.5 Reflection	$\frac{-6}{26}$			
		-			
9	References	27			
	Bibliography	32			
Tables					
Ta		0			
	able 1 Typical concrete properties	3			
	able 2Partial densities of concrete constituents	6			

Figures

Figure 1 Figure 2	Example of oblique penetration short circuit paths \dots P_1 convergence of the fast neutron dose rate in water from	12
Figure 3	a point fission source Comparison of neutron and gamma-ray dose rate through	15
Figure 4	Example of excess transmission through a void	25
Appendices		
Appendix A	List of codes	33
Appendix B	Shielding data	36
Table B.1	Mass attenuation coefficients, excluding coherent scattering, for concretes described in Table 1 of the standard	37
Table B.2	Mass attenuation coefficients, excluding coherent scattering, for elements comprising ordinary	01
Table B.3	Concrete	38
	concrete compositions	39
Table B.4	Mass energy transfer coefficients for concretes described in Table 1 of the standard	40
Table B.5	Mass energy absorption coefficients for concretes described in Table 1 of the standard	41
Table B.6	Taylor coefficients for approximating concrete buildup factors	42
Table B.7	Geometric progression buildup factor coefficients for ordinary concrete (air kerma, 40 mfp)	43
Table B.8	Geometric progression buildup factor coefficients for ordinary concrete (concrete kerma, 40 mfp)	44
Table B.9	Gamma-ray spectra from thermal neutron capture in concrete	45
Table B.10	Neutron constants for concrete	45
Figure B.1	Air kerma buildup factors in concrete, moments method calculations	46
Figure B.2	Concrete kerma buildup factors in concrete, moments method calculations	47
Figure B.3	Air kerma buildup factors in concrete, geometric progression form (energy: 0.03 to 0.2 MeV)	48
Figure B.4	Air kerma buildup factors in concrete, geometric progression form (energy: 0.3 to 2.0 MeV)	49
Figure B.5	Air kerma buildup factors in concrete, geometric progression form (energy: 3.0 to 15.0 MeV)	50
Figure B.6	Concrete kerma buildup factors in concrete, geometric progression form (energy: 0.03 to 0.2 MeV)	51
Figure B.7	Concrete kerma buildup factors in concrete, geometric progression form (energy: 0.3 to 2.0 MeV)	52
Figure B.8	Concrete kerma buildup factors in concrete, geometric progression form (energy: 3.0 to 15.0 MeV)	53
Figure B.9	Comparison of adjoint discrete ordinates and moments method calculations of neutron dose equivalent (rem) from a plane isotropic fission source as a function of concrete thickness, source normalized to one neutron	F /
	In a forward direction	54

Appendix C	Application data and results	56
Table C.1	Constants for the empirical formulation of the ambient dose H [*] (10 mm) albedo $\alpha_D(E_o, \theta_o, \theta, \phi)$ for neutrons	
Table C.2	incident on NBS Type 04 concrete Constants for the expressions fitting the Coleman	59
	et al. differential and total albedo data for	
	intermediate-energy neutrons incident on	01
Table C.3	Constants for the empirical formulation of the ambient dose H*(10 mm) albedo $\alpha_{D}(E, \theta, \theta, \phi)$ for gamma	61
Table C.4	rays incident on NBS Type 04 concrete \dots Parameters for the five-term approximation of the	62
	ambient dose equivalent albedo for reflected secondary gamma rays resulting from neutrons incident on ordinary concrete	69
Table C.5	Attenuation factors for monoenergetic beams of gamma rays obliquely incident on slabs of Type 04 ordinary	02
	concrete, expressed as the ratio of transmitted to incident air kerma	63
Table C.6	Neutron and secondary-gamma-ray transmission factors for ambient dose H*(10) (PAR) for neutrons incident on 15-cm-thick slabs of NBS Type 04 ordinary	64
Table C 7	concrete	64
	for ambient dose H*(10) (PAR) for neutrons incident on 30-cm-thick slabs of NBS Type 04 ordinary	CE.
Table C.8	Neutron and secondary-gamma-ray transmission factors for ambient dose H*(10) (PAR) for neutrons incident on 50-cm-thick slabs of NBS Type 04 ordinary	00
Table C.9	Neutron and secondary-gamma-ray transmission factors for ambient dose H*(10) (PAR) for neutrons incident on 75-cm-thick slabs of NBS Type 04 ordinary	66
Table C.10	Neutron and secondary-gamma-ray transmission factors for ambient dose H*(10) (PAR) for neutrons incident on 100-cm-thick slabs of NBS Type 04 ordinary	67
Table C.11	concrete Composition of Hanford ordinary concrete as a function	68 69
Table C.12	Compositions of concretes used in measurements	69
Table C.13	ANISN spherical model for pressurized water reactor calculation	70
Table C.14	Material compositions for pressurized water reactor calculation	70
Table C.15	Neutron source distribution for pressurized water reactor calculation	71
Table C.16	Neutron source spectrum for pressurized water reactor calculation	71
Figure C.1	Resonance neutron distribution in ordinary concrete as a function of temperature	72
Figure C.2	Fast neutron distribution in ordinary concrete as a function of temperature	73

Figure C.3 Measured r	neutron fluxes versus distance in ordinary
Figure C.4 Gamma-ray	y and neutron flux attenuation curves in
ordinary	concrete
Figure C.5 Radiation l	evels in Bradwell side shield
Figure C.6 Dose rates	in typical pressurized water reactor shield
Figure C.7 Gamma-ray	v dose rates from 4-in. Schedule 80 and
Schedule	160 steel pipe, containing airborne or
waterbor	ne radioactivity, derived through use of the
QADMOI	D-GP code
Figure C.8 Gamma-ray	v dose rates from 8-in. Schedule 80 and
Schedule	160 steel pipe, containing airborne or
waterbor	ne radioactivity, derived through use of the
QADMOI	D-GP code
Figure C.9 Gamma-ray	dose rates from 12-in. Schedule 80 and
Schedule	160 steel pipe, containing airborne or
waterbor	ne radioactivity, derived through use of the
QADMOI	D-GP code
Figure C.10 Gamma-ray	160 stool ning, containing sinharms or
Schedule	no redicativity derived through use of the
	D CD code
QADMOI Figure C 11 Commo rea	Logo rates from 24 in Schedule 20 and
Figure 0.11 Gamma-ray	160 stool pipe, containing sirborne or
waterbor	no radioactivity derived through use of the
QADMOI	GP code
Figure C 12 Gamma-ray	v dose rates from 6-ft outer diameter tank
with 0.25	5-in, steel wall, containing airborne or
waterbor	ne radioactivity, derived through use of the
QADMOI	D-GP code
Figure C.13 Penetration	types
Figure C.14 Geometry f	for albedos and a sample application
Figure C.15 Reflection	geometries