

Edition 1.0 2014-03

# INTERNATIONAL STANDARD

# NORME INTERNATIONALE



Electric vehicle conductive charging system – Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging

Système de charge conductive pour véhicules électriques – Partie 24: Communication digitale entre la borne de charge à courant continu et le véhicule électrique pour le contrôle de la charge à courant continu





#### THIS PUBLICATION IS COPYRIGHT PROTECTED

#### Copyright © 2014 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00

CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch

#### About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

#### **About IEC publications**

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

#### IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

#### IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

#### IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

#### Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 14 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

#### IEC Glossary - std.iec.ch/glossary

More than 55 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

#### IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

#### A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

#### A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

#### Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

#### Recherche de publications IEC - www.iec.ch/searchpub

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

#### IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

#### Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient plus de 30 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 14 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

#### Glossaire IEC - std.iec.ch/glossary

Plus de 55 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

#### Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.



Edition 1.0 2014-03

## INTERNATIONAL STANDARD

# NORME INTERNATIONALE



Electric vehicle conductive charging system – Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging

Système de charge conductive pour véhicules électriques – Partie 24: Communication digitale entre la borne de charge à courant continu et le véhicule électrique pour le contrôle de la charge à courant continu

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE
CODE PRIX

V

ICS 43.120 ISBN 978-2-8322-1441-1

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

### CONTENTS

| FOR   | REWORD                                                                                                                        | 3  |
|-------|-------------------------------------------------------------------------------------------------------------------------------|----|
| INT   | RODUCTION                                                                                                                     | 5  |
| 1     | Scope                                                                                                                         | 6  |
| 2     | Normative references                                                                                                          | 6  |
| 3     | Terms and definitions                                                                                                         | 7  |
| 4     | System configuration                                                                                                          | 7  |
| 5     | Digital communication architecture                                                                                            | 7  |
| 6     | Charging control process                                                                                                      | 7  |
| 7     | Overview of charging control                                                                                                  | 7  |
| 8     | Exchanged information for d.c. charging control                                                                               | 8  |
| Ann   | ex A (normative) Digital communication for control of d.c. EV charging system A                                               | 10 |
| Ann   | ex B (normative) Digital communication for control of d.c. EV charging system B                                               | 20 |
| Ann   | ex C (normative) Digital communication for control of d.c. charging system C (Combined system)                                | 27 |
| Bibli | iography                                                                                                                      |    |
|       |                                                                                                                               |    |
|       | re 1 – Digital communication between a d.c. EV charging station and an electric cle for control of d.c. charging              | 8  |
| Figu  | re A.1 – Sequence diagram of d.c. charging control communication for system A                                                 | 13 |
| Figu  | ıre A.2 – CAN-bus circuit diagram                                                                                             | 18 |
| Figu  | re A.3 – Dedicated CAN communication between vehicle and d.c. EV charging ion                                                 |    |
|       | re B.1 – Sequence diagram of d.c. charging control communication for system B                                                 |    |
| Tabl  | le 1 – Exchanged information for d.c. charging control                                                                        | 8  |
|       | le A.1 – Communication actions and parameters during d.c. charging control cess between system A station and vehicle (1 of 2) | 11 |
|       | le A.2 – Exchanged parameter during d.c. charging control process between em A station and vehicle (1 of 4)                   | 14 |
| Tabl  | le A.3 – The physical/data link layer specifications for system A                                                             | 18 |
| Tabl  | le B.1 – Communication actions and parameters during d.c. charging control cess between system B station and vehicle          |    |
| Tabl  | le B.2 – Parameters in charge handshake stage for system B                                                                    | 22 |
| Tabl  | le B.3 – Parameters in charge parameter configuration stage for system B                                                      | 23 |
|       | le B.4 – Parameters in charging stage for system B (1 of 2)                                                                   |    |
|       | le B.5 – Parameters in charge ending stage for system B                                                                       |    |
|       | le B.6 – Error parameters for system B                                                                                        |    |
|       | le B.7 – Physical/data link layer specifications for system B                                                                 |    |
| Tabl  | le C.1 – Required exchanged parameters for d.c. charging control for system C                                                 | 28 |

#### INTERNATIONAL ELECTROTECHNICAL COMMISSION

#### **ELECTRIC VEHICLE CONDUCTIVE CHARGING SYSTEM -**

### Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging

#### **FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61851-24 has been prepared by IEC technical committee 69: Electric road vehicles and electric industrial trucks.

The text of this standard is based on the following documents:

| FDIS       | Report on voting |
|------------|------------------|
| 69/273FDIS | 69/280/RVD       |

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61851 series, published under the general title *Electric vehicle conductive charging system*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

#### INTRODUCTION

The introduction and commercialisation of electric vehicles has been accelerated in the global market, responding to the global concerns on  ${\rm CO_2}$  reduction and energy security. Concurrently, the development of charging infrastructure for electric vehicles has also been expanding. As supplementary system of a.c. charging system, d.c. charging is recognized as an effective solution to extend the available range of electric vehicles, and different d.c. charging systems are being used over the world. The international standardization in terms of charging infrastructure including d.c. charging systems is indispensable for the diffusion of electric vehicles, and this standard is developed for the manufacturers' convenience by providing general specifications for control communication protocols between off-board d.c. charger and electric vehicles.

#### **ELECTRIC VEHICLE CONDUCTIVE CHARGING SYSTEM -**

### Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging

#### 1 Scope

This part of IEC 61851, together with IEC 61851-23, applies to digital communication between a d.c. EV charging station and an electric road vehicle (EV) for control of d.c. charging, with an a.c. or d.c. input voltage up to 1 000 V a.c. and up to 1 500 V d.c. for the conductive charging procedure.

The EV charging mode is mode 4, according to IEC 61851-23. The charging station supplied by high voltage a.c. supply is not covered by this standard.

Annexes A, B, and C give descriptions of digital communications for control of d.c. charging specific to d.c. EV charging systems A, B and C as defined in Part 23.

#### 2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61851-1:2010, Electric vehicle conductive charging system – Part 1: General requirements

IEC 61851-23:2014, Electric vehicle conductive charging system – Part 23: DC electric vehicle charging station

ISO/IEC 15118-1<sup>1</sup>, Road vehicles – Vehicle to grid communication interface – Part 1: General information and use-case definition

ISO/IEC 15118-2:—<sup>1</sup>, Road vehicles – Vehicle to grid communication interface – Part 2: Technical protocol description and open systems interconnections (OSI) layer requirements

ISO/IEC 15118-3:—<sup>1</sup>, Road vehicles – Vehicle to grid communication interface – Part 3 Physical layer requirements

ISO 11898-1:2003, Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical signalling

ISO 11898-2:2003, Road vehicles – Controller area network (CAN) – Part 2: High-speed medium access unit