X-25-75

Recommended Practice for Design and Operation of Subsea Production Systems

API RECOMMENDED PRACTICE 17A (RP 17A) FIRST EDITION, SEPTEMBER 1, 1987

American Petroleum Institute 1220 L Street, Northwest Washington, DC 20005

Issued by AMERICAN PETROLEUM INSTITUTE Production Department

FOR INFORMATION CONCERNING TECHNICAL CONTENTS OF THIS PUBLICATION CONTACT THE API PRODUCTION DEPARTMENT, 211 N. ERVAY, SUITE 1700, DALLAS, TX 75201 — (214) 220-9111.

SEE BACK SIDE FOR INFORMATION CONCERNING HOW TO OBTAIN ADDITIONAL COPIES OF THIS PUBLICATION.

Users of this publication should become familiar with its scope and content. This publication is intended to supplement rather than replace individual engineering judgment.

OFFICIAL PUBLICATION

TABLE OF CONTENTS

	PAGI	ď
FOREWORD.	•••••	
POLICY		6
SECTION 1 —		_
1.1 1.2	Scope	
SECTION 2 —	WELL COMPLETION EQUIPMENT	
2.1	Scope)
2.2	Subsea Wellhead System 9)
2.2.1	Subsea Wellhead System Description 9	
2.2.2	Subsea Wellhead System Functional Considerations 9	
2.2.3	Subsea Wellhead System Design Considerations 18	
2.3	Subsea Tubing Hanger/Tree System 14	Ł
2.3.1	Subsea Tubing Hanger/Tree System Description 14	Ļ
2.3.2	Tubing Hanger/Tree System Functional Considerations	`
2.3.3	Tubing Hanger/Tree Design Considerations	
2.4	Subsea Completion on Mudline Casing Suspension System	
2.4.1	Mudline Casing Suspension System Description 21	•
2.4.2	Functional Considerations for Subsea Completion on	
2.4.3	Mudline Casing Suspension System	
2.4.3	Design Considerations for Subsea Completion on Mudline Casing Suspension System	,
SECTION 3 —	PIPELINES AND END CONNECTIONS	
3.1	Scope 24	ŧ
3.2	System Description 24	
3.3	Functional Considerations	
3.3.1	Pipeline Types	
3.3.2	Platform Risers	
3.3.3	Pipeline Components	
3.3.4	Special Tools	
3.3.5	Installation 24	
3.4	Design Considerations	
3.4.1	Pipeline Design	
3.4.2	End Connection Design 32	
3.4.3	Fabrication/Installation Design	
SECTION 4 —	CONTROL SYSTEMS, LINES AND FLUIDS	
1.1	Scope 40	1
1.2	System Description 40	
1.3	Functional Considerations 40	
1.3.1	Installation/Workover Control System 40	
1.3.2	Production Control System 40	
1.3.3	Control System Types 41	

TABLE OF CONTENTS (continued)

4.3.4	Control System Monitoring/Data Acquisition	
4.3.5	Test Stands and Test Equipment	
4.3.6	Subsea Systems	
4.3.7	Control Functions	
4.4	Design Considerations	44
4.4.1	General Design Factors	
4.4.2	Surface Control Systems	
4.4.3	Subsea Systems	
4.4.4	Control Lines	
4.4.5	Control Fluids	53
SECTION 5 —	TEMPLATE AND MANIFOLD SYSTEMS	
5.1	Scope	57
5.2	System Descriptions	
5.2.1	Template	
5.2.2	Manifold	
5.3	Functional Considerations	
5.3.1	Template Functional Requirements	
5.3.2	Manifold Functional Requirements	
5.4	Design Considerations	
5.4.1	Overall System Design Considerations	
5.4.2	Template Design Considerations	
5.4.3	Manifold Design Considerations	
SECTION 6 -	PRODUCTION RISERS	
6.1	Scope	65
6.2	System Description	
6.2.1	Functions	
6.2.2	Production Riser Design Types	
6.2.3	Production Riser Interfaces	
6.3	Functional and Operational Considerations	
6.3.1	Applications	
6.3.2	Production Aspects	
6.3.3	Inspection and Maintenance	
6.3.4	Sealing	
6.3.5	Structural Integrity	
6.3.6	Handling and Storage	
6.3.7	Contingency Planning	
6.4	Production Riser Components	
6.4.1	Introduction	
6.4.2	Rigid-Pipe Riser Components	
6.4.3	Flexible-Pipe Riser Components	
6.5	Design Considerations	
6.5.1	Riser Design Data	
6.5.2		
6.5.3	Riser Design Criteria Riser Analysis Methodology	72

American Petroleum Institute

TABLE OF CONTENTS (continued)

SECTION 7 —	OPERATIONS	
7.1	Introduction	
7.1.1	Scope	78
7.1.2	General	78
7.1.3	Training of Personnel	78
7.1.4	Safety	78
7.2	Equipment Integration Tests	78
7.2.1	Purpose	78
7.2.2	Pretest Requirements	78
7.2.3	Test Procedure Format	78
7.2.4	Test Types	78
7.2.5	Subsea Production System Interfaces	79
7.2.6	Equipment Rework	79
7.2.7	Post-Test Documentation	79
7.2.8	Additional Considerations	79
7.3	Installation	79
7.3.1	Scope	79
7.3.2	General	79
7.3.3	Templates/Bases	80
7.3.4	Tree/Manifold Components	81
7.3.5	Pipelines/Umbilicals	81
7.3.6	Risers	82
7.4	Production/Injection Operations	82
7.4.1	Introduction	82
7.4.2	General	83
7.4.3	Operating Guidelines	83
7.5	Maintenance Operations	84
7.5.1	Introduction	84
7.5.2	General Maintenance Considerations	84
7.5.3	Maintenance Approaches/Guidelines	
7.6	Abandonment	86
7.6.1	General	86
7.6.2	Well Plug and Abandonment	86
7.6.3	Manifolds/Template	86
7.6.4	Pipelines	86
	_	
SECTION 8 —	QUALITY ASSURANCE, MATERIALS AND CORROSION	
8.1	Scope	87
8.2	Quality Assurance Elements	87
8.2.1	Quality Assurance Program	87
8.2.2	Quality Assurance Manual	87
8.2.3	Design Control	87
8.2.4	Process Control	87
8.2.5	Procurement Control	87
8.2.6	Material/Product Identification	87
0.4.0	Manci 191/ I Londo Inclinitionmenti	٠,

TABLE OF CONTENTS (continued)

8.2.7	Traceability 87
8.2.8	Special Processes 87
8.2.9	Inspection and Testing 87
8.2.10	Control of Measuring and Test Equipment 87
8.2.11	Documentation 87
8.2.12	Handling, Storage and Shipping 87
8.3	Materials 87
8.3.1	Metals 88
8.3.2	Dissimilar Metals88
8.3.3	Non-metals
8.4	Corrosion
8.4.1	Internal 88
842	External 88

NOTE:

This is the 1st edition of this Recommended Practice. It is under the jurisdiction of the API Committee on Standardization of Subsea Production Systems and was authorized for publication by letter ballot.

Requests for permission to reproduce or translate all or any part of the material published herein should be addressed to the Director, American Petroleum Institute, Production Department, 211 N. Ervay, Suite 1700, Dallas TX 75201.

RECOMMENDED PRACTICE FOR DESIGN AND OPERATION OF SUBSEA PRODUCTION SYSTEMS

FOREWORD

This recommended practice (RP) is under the jurisdiction of the American Petroleum Institute (API) Committee on Standardization of Subsea Production Systems.

POLICY

- (1) American Petroleum Institute (API) Recommended Practices are published to facilitate the broad availability of proven, sound, engineering and operating practices. These Recommended Practices are not intended to obviate the need for applying sound judgment as to when and where these Recommended Practices should be utilized.
- (2) The formulation and publication of API Recommended Practices are not intended to, in any way, inhibit anyone from using any other practices.

- (3) Nothing contained in any API Recommended Practice is to be construed as granting any right by implication or otherwise, for the manufacture, sale, or use in connection with any method, apparatus, or product covered by letters patent, nor as insuring anyone against liability for infringement of letters patent.
- (4) This Recommended Practice may be used by anyone desiring to do so, and a diligent effort has been made by API to assure the accuracy and reliability of the data contained herein. However, the Institute makes no representation, warranty or guarantee in connection with the publication of this Recommended Practice and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use, for any violation of any federal, state or municipal regulation with which an API recommendation may conflict, or for the infringement of any patent resulting from the use of this publication.

SECTION 1 **GENERAL**

1.1 Scope. This Recommended Practice provides guidelines for the design, installation, operation, repair and abandonment of subsea production systems. The elements of subsea production systems included (Figure 1.1) are wellheads (both subsea and mudline casing suspension systems) and trees; pipelines and end connections; controls, control lines and control fluids; templates and manifolds; and production risers (both rigid and flexible). Other sections of the Recommended Practice cover operations, quality assurance, materials and corrosion. Specialized equipment such as split trees and trees and manifolds in atmospheric chambers are not specifically discussed because of their limited use. However, the information presented is applicable to those types of equipment. This document includes information on a wide range of equipment and operations to emphasize interrelationships and the need to consider subsea production installations as systems.

In planning a subsea production system, a systems approach should be used which considers installation, operation, maintenance, repair and abandonment requirements. The system may range in complexity from a single satellite well with a flowline to a fixed platform to several wells on a template producing to a floating facility. Produced and injected fluid characteristics, rates and pressures; number of wells; environmental conditions and the ultimate field development scheme must be determined before a detailed design can be undertaken.

The development and application of subsea production technology is accelerating at a rapid pace. In those areas where the committee felt that adequate information was available, specific recommendations are given. In other areas, general statements are used to indicate that consideration should be given to particular points. In many cases (particularly with control systems), there are a number of viable options and operator preference governs the final selection of equipment or an operation. Those involved with subsea production systems are encouraged to utilize all of the new advances available and to suggest revisions or additions to this Recommended Practice. It is intended that the general statements contained herein will be eventually replaced by firm recommendations.

1.2 Applicable Standards. The following standards are referenced in part or in whole in this recommended practice. It is recognized that additional standards. specifications, Guidance Notes and Recommended Practices have been developed by other bodies. Therefore this listing is representative and should not be considered as either all inclusive or exclusive of other standards relating to topics covered in this RP.

Quality Programs

American Petroleum Institute

SPEC Q1

RP 2A	Planning, Designing and Construct-
	ing Fixed Offshore Platforms.
BULL 2J	Comparison Of Marine Drilling Riser
	Analyses.
RP 2K	Care and Use of Marine Drilling
	Risers.
RP 2Q	Design And Operation of Marine
	Drilling Riser Systems.
RP 2R	Design, Rating and Testing Of Marine
	Drilling Riser Couplings.
RP2T	Planning, Designing, and Construct-
	ing Tension Leg Platforms.

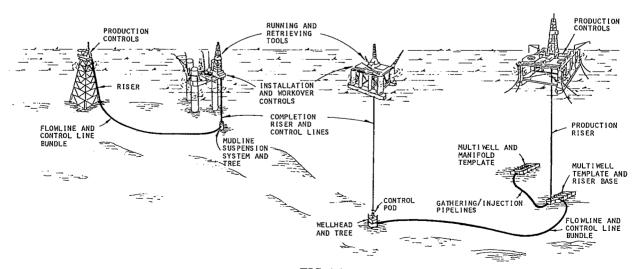


FIG. 1.1 SUBSEA PRODUCTION SYSTEM ELEMENTS