

Edition 2.1 2017-01

FINAL VERSION

VERSION FINALE

Semiconductor devices – Discrete devices – Part 4: Microwave diodes and transistors

Dispositifs à semiconducteurs – Dispositifs discrets – Partie 4: Diodes et transistors hyperfréquences

- 2 - IEC 60747-4:2007+AMD1:2017 CSV © IEC 2017

CONTENTS

FO	FOREWORD				
1	Scop	e		8	
2	Norm	Normative references			
3	Variable capacitance, snap-off diodes and fast-switching schottky diodes			8	
	3.1	Variab	le capacitance diodes	8	
		3.1.1	General	8	
		3.1.2	Terminology and letter symbols	9	
		3.1.3	Essential ratings and characteristics	9	
		3.1.4	Measuring methods	12	
	3.2	Snap-o	off diodes, Schottky diodes	39	
		3.2.1	General	39	
		3.2.2	Terminology and letter symbols	39	
		3.2.3	Essential ratings and characteristics	39	
		3.2.4	Measuring methods	41	
4	Mixe	r diodes	and detector diodes	48	
	4.1	Mixer	diodes used in radar applications	48	
		4.1.1	General	48	
		4.1.2	Terminology and letter symbols	48	
		4.1.3	Essential ratings and characteristics	48	
		4.1.4	Measuring methods	50	
	4.2	Mixer	diodes used in communication applications	69	
		4.2.1	General	69	
		4.2.2	Terminology and letter symbols	69	
		4.2.3	Essential ratings and characteristics	69	
		4.2.4	Measuring methods	71	
	4.3	Detect	or diodes	71	
5	Impa	tt diode	S	71	
	5.1	Impatt	diodes amplifiers	71	
		5.1.1	General	71	
		5.1.2	Terms and definitions	71	
		5.1.3	Essential ratings and characteristics	74	
	5.2	Impatt	diodes oscillators	77	
6	Gunr	n diodes	·	77	
	6.1	Genera	al	77	
	6.2	Terms	and definitions	78	
	6.3	Essent	tial ratings and characteristics	78	
	6.4	Measu	ring methods	78	
		6.4.1	Pulse breakdown voltage V(BR)	78	
		6.4.2	Threshold voltage	79	
_	<u> </u>	6.4.3	Resistance	80	
1	Віро	lar trans	sistors	81	
	7.1	Genera	al	81	
	7.2	Terms	and definitions	81	
	7.3	Essent	tial ratings and characteristics	84	
		7.3.1		84	
		7.3.2	Limiting values (absolute maximum rating system)	84	

IEC © I	6074) FC 20	7-4:200 17	7+AMD1:2017 CSV – 3 –	
e n	7.4	Measuring methods		
		7.4.1	General	
		7.4.2	DC characteristics	
		7.4.3	RF characteristics	
	7.5	Verifying methods		
		7.5.1	Load mismatch tolerance (Ψ_1)	
		7.5.2	Source mismatch tolerance (Ψ_S)	
		7.5.3	Load mismatch ruggedness (Ψ_R)	
8	Field-effect transistors			
	8.1	Genera	al	
	8.2	Terms	and definitions	
	8.3	Essential ratings and characteristics		
		8.3.1	General	114
		8.3.2	Limiting values (absolute maximum rating system)	115
	8.4	Measu	ring methods	116
		8.4.1	General	116
		8.4.2	DC characteristics	117
		8.4.3	RF characteristics	123
	8.5	Verifyiı	ng methods	134
		8.5.1	Load mismatch tolerance (Ψ_L)	134
		8.5.2	Source mismatch tolerance ($\Psi_{\mathbf{S}}$)	134
		8.5.3	Load mismatch ruggedness ($\Psi_{\mathbf{R}}$)	134
9	Asse	ssment	and reliability – specific requirements	134
	9.1	Electric	cal test conditions	134
	9.2	Failure	criteria and failure-defining characteristics for acceptance tests	134
	9.3	Failure	criteria and failure-defining characteristics for reliability tests	134
	9.4	Proced	lure in case of a testing error	134
Fig	ure 1 ·	– Equiva	alent circuit	12
Fig	ure 2 ·	– Circui	t for the measurement of reverse current <i>I</i> _R	12
Fig	ure 3 ·	– Circui	t for the measurement of forward voltage V _F	
Fia	ure 4 ·	– Circui	t for the measurement of capacitance C _{tot}	14
Fia	ure 5 ·	- Circui	t for the measurement of effective quality factor	15
Fig		- Circui	t for the measurement of series inductance	17
Fig		Circui	t for the measurement of thermal registered R	17
Fig			t for the measurement of the sign the model in a dense \overline{Z}	10
Fig	ure 8 ·	- Circui	t for the measurement of transient thermal impedance Z_{th}	
Fig	ure 9 ·	– Wave	guide mounting	21
Fig	ure 10) – Equi	valent circuit of mounted diode	21
Fig	ure 11	- Blocl	k diagram of transmission loss measurement circuit	22
Fig	ure 12	2 – Curv	e indicating transmitted power versus frequency	24
Fig	ure 13	– Exan	nple of cavity	26
Fig	ure 14	– Blocl	k diagram for the measurement of effective Q in cavity method	

- 4 - IEC 60747-4:2007+AMD1:2017 CSV

Figure 15 – Block diagram of transformed impedance measurement circuit	35
Figure 16 – Example of plot of diode impedance as a function of bias	36
Figure 17 – Modified Smith Chart indicating constant Q and constant R circles	38
Figure 18 – Transition time <i>t</i> t	
Figure 19 – Circuit for the measurement of transition time (t_t)	41
Figure 20 – The time interval (t _{t1})	43
Figure 21 – Circuit for the measurement of reverse recovery time	43
Figure 22 – The reverse recovery time <i>t</i> _{rr}	44
Figure 23 - Circuit for the measurement of the excess carrier effective lifetime	45
Figure 24 - Circuit for the measurement of the excess carrier effective lifetime	46
Figure 25 – the ratio of i_{pr} to i_{pf}	47
Figure 26 – Circuit for the measurement of forward current (I_F)	50
Figure 27 – Circuit for the measurement of rectified current (I_0)	51
Figure 28 – Circuit for the measurement of intermediate frequency impedance (Z_{if}) the method 1	in 52
Figure 29 – Circuit for the measurement of intermediate frequency impedance (Z_{if})	in
the method 2	53
Figure 30 – Circuit for the measurement of voltage standing wave ratio	55
Figure 31 – Circuit for the measurement of overall noise factor	57
Figure 32 – Circuit for the measurement of output noise ratio	61
Figure 33 – Circuit for the measurement of conversion loss in dc incremental method	od63
Figure 34 – Circuit for the measurement of conversion loss in amplitude modulation method	n 64
Figure 35 – Block diagram of humout energy measurement circuit	
Figure 36 – Circuit for the measurement of pulse breakdown voltage	03
Figure 27 Circuit for the measurement of threshold voltage	70
Figure $38 - $ Circuit for the measurement of resistance in voltmeter-ammeter metho	d 80
Figure 20 Circuit for the measurement of resistance in volumeter-ammeter method	u00
Figure 39 – Circuit for the measurement of coattoring parameters	01
Figure 40 – Circuit for the measurement of scattering parameters	
Figure 47 – Incident and reflected waves in a two-port network	
Figure 42 – Circuit for the measurements of two-tone intermodulation distortion	
analyser	
Figure 44 – Typical intermodulation products output power characteristic	
Figure 45 – Circuit for the verification of load mismatch tolerance in the method 1	
Figure 46 – Circuit for the verification of load mismatch tolerance in the method 2	105
Figure 47 – Circuit for the verification of source mismatch tolerance in the method	1107

IEC 60747-4:2007+AMD1:2017 CSV -5 - © IEC 2017

Figure 48 - Circuit for the verification of source mismatch tolerance in the method 2109
Figure 49 – Circuit for the verification of load mismatch ruggedness
Figure 50 – Circuit for the measurements of gate-source breakdown voltage, $V_{(BR)GSO}$ 118
Figure 51 – Circuit for the measurements of gate-drain breakdown voltage, $V_{(BR)GDO}$ 118
Figure 52 - Circuit for the measurement of thermal resistance, channel-to-case119
Figure 53 – Timing chart of DC pulse to be supplied to the device being measured121
Figure 54 – Calibration curve $V_{GSF} = f(T_{ch})$ for fixed $I_{G(ref)}$, evaluation of α
Figure 55 – V_{GSF2} in function of delay time τ_4
Figure 56 - Circuit for the measurement of output power at specified input power124
Figure 57 – Circuit for the measurements of the noise figure and associated gain129

Table 1 – Electrical limiting values	84
Table 2 – DC characteristics	85
Table 3 – RF characteristics	86
Table 4 – Replacing rule for terms	87
Table 5 – Replacing rule for symbols in the case of constant base current	88
Table 6 – Replacing rule for symbols in the case of constant base voltage	88
Table 7 – Electrical limiting values	115
Table 8 – DC characteristics	115
Table 9 – RF characteristics	116
Table 10 – Replacing rules for terms	117
Table 11 – Replacing rules for symbols	117
Table 12 – Operating conditions and Test circuits	135
Table 13 – Failure criteria and measurement conditions	137

- 6 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES – DISCRETE DEVICES –

Part 4: Microwave diodes and transistors

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

DISCLAIMER

This Consolidated version is not an official IEC Standard and has been prepared for user convenience. Only the current versions of the standard and its amendment(s) are to be considered the official documents.

This Consolidated version of IEC 60747-4 bears the edition number 2.1. It consists of the second edition (2007-08) [documents 47E/330/FDIS and 47E/339/RVD] and its amendment 1 (2017-01) [documents 47E/499/CDV and 47E/517/RVC]. The technical content is identical to the base edition and its amendment.

This Final version does not show where the technical content is modified by amendment 1. A separate Redline version with all changes highlighted is available in this publication.

IEC 60747-4:2007+AMD1:2017 CSV - 7 - © IEC 2017

International Standard IEC 60747-4 has been prepared by subcommittee 47E: Discrete semiconductor devices, of IEC technical committee 47: Semiconductor devices.

This second edition constitutes a technical revision.

The major technical changes with regard to the previous edition are as follows:

- a) the clause of bipolar transistors has been added;
- b) the clause of field-effect transistors has been amended.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The list of all parts of the IEC 60747 series, under the general title *Semiconductor devices* – *Discrete devices*, can be found on the IEC website.

The committee has decided that the contents of the base publication and its amendment will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

SEMICONDUCTOR DEVICES – DISCRETE DEVICES –

Part 4: Microwave diodes and transistors

1 Scope

This part of IEC 60747 gives requirements for the following categories of discrete devices:

- variable capacitance diodes and snap-off diodes (for tuning, up-converter or harmonic multiplication, switching, limiting, phased shift, parametric amplification);
- mixer diodes and detector diodes;
- avalanche diodes (for direct harmonic generation, amplification);
- gunn diodes (for direct harmonic generation);
- bipolar transistors (for amplification, oscillation);
- field-effect transistors (for amplification, oscillation).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-702, International Electrotechnical Vocabulary – Chapter 702: Oscillations, signals and related devices (available at: http://www.electropedia.org)

IEC 60747-1:2006, Semiconductor devices – Part 1: General IEC 60747-1/AMD 1:2010

IEC 60747-7:2000, Semiconductor devices – Part 7: Bipolar transistors

IEC 60747-8:2000, Semiconductor devices – Part 8: Field-effect transistors

3 Variable capacitance, snap-off diodes and fast-switching schottky diodes

3.1 Variable capacitance diodes

3.1.1 General

The provisions of this part deal with diodes (excluding snap-off diodes) in which the variable capacitance effect is used; they cover four applications: tuning, harmonic multiplication, switching (including limiting), parametric amplification.

The devices for these applications are defined as follows:

Diodes for tuning

Diodes which are used to vary the frequency of a tuned circuit. These diodes are usually characterized a frequency of resonance much higher than the frequency of use and have a known capacitance/voltage relationship.

Diodes for harmonic multiplication

These diodes must have a non-linear capacitance/voltage relationship at the frequency of