# SPÉCIFICATION TECHNIQUE TECHNICAL SPECIFICATION

CEI IEC TS 60034-27

> Première édition First edition 2006-12

## Machines électriques tournantes -

#### Partie 27:

Mesures à l'arrêt des décharges partielles effectuées sur le système d'isolation des enroulements statoriques des machines électriques tournantes

## Rotating electrical machines –

#### **Part 27:**

Off-line partial discharge measurements on the stator winding insulation of rotating electrical machines

© IEC 2006 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch



CODE PRIX PRICE CODE



## SOMMAIRE

| AV. | ANT-F       | PROPOS                                                                                       | 6   |
|-----|-------------|----------------------------------------------------------------------------------------------|-----|
| INT | RODI        | JCTION                                                                                       | 10  |
|     | D           | alan diametration                                                                            | 4.4 |
| 1   |             | aine d'application                                                                           |     |
| 2   |             | rences normatives                                                                            |     |
| 3   |             | es et définitions                                                                            |     |
| 4   | Natu        | re des DP dans les machines tournantes                                                       | 18  |
|     | 4.1         | Notions élémentaires sur les DP                                                              |     |
|     | 4.2         | Types de DP dans les machines tournantes                                                     |     |
|     | 4.3         | Propagation des impulsions dans les enroulements                                             |     |
| 5   | Tech        | niques et appareils de mesure                                                                |     |
|     | 5.1         | Généralités                                                                                  |     |
|     | 5.2         | Influence de la réponse en fréquence du système de mesure                                    |     |
|     | 5.3         | Effets des ensembles de couplage des DP                                                      |     |
| _   | 5.4         | Systèmes de mesure à large bande et à bande étroite                                          |     |
| 6   |             | alisation des mesures                                                                        |     |
|     | 6.1         | Généralités                                                                                  |     |
|     | 6.2         | Etendue minimale de la présentation des données relatives aux DP                             |     |
| 7   | 6.3         | Moyens supplémentaires de représentation des données relatives aux DP                        |     |
| 7   |             | ıits d'essai                                                                                 |     |
|     | 7.1         | Généralités                                                                                  |     |
|     | 7.2         | Composants individuels d'enroulement                                                         |     |
| 0   | 7.3         | Enroulement complet                                                                          |     |
| 8   |             | nalisation des mesures                                                                       |     |
|     | 8.1         | Généralités                                                                                  |     |
|     | 8.2         | Composants individuels d'enroulement                                                         |     |
| 9   | 8.3<br>Mode | es opératoires d'essai                                                                       |     |
| 9   |             | •                                                                                            | 32  |
|     | 9.1         | Réalisation de mesures de DP au niveau des enroulements et des composants d'enroulements     | 52  |
|     | 9.2         | Identification et localisation de la source de décharges partielles                          |     |
| 10  | Inter       | prétation des résultats d'essai                                                              |     |
|     |             | Généralités                                                                                  |     |
|     |             | Interprétation relative à la TADP, à la TEDP et à Q <sub>m</sub>                             |     |
|     |             | Identification des patrons de DP                                                             |     |
| 11  |             | port d'essai                                                                                 |     |
| Anı | nexe A      | A (informative) Mesures en fonctionnement des décharges partielles                           | 78  |
|     |             | 3 (informative) Méthodes non électriques de détection des DP et méthodes sation de celles-ci | 82  |
|     |             | C (informative) Bruit d'origine externe, perturbations et sensibilité                        |     |
|     |             | O (informative) Méthodes de suppression des perturbations                                    |     |
|     |             | E (informative) Interprétation des données d'amplitude des DP et des patrons                 |     |
|     |             | solus en phase                                                                               | 102 |

# CONTENTS

| FΟ  | REWORD                                                                                                                                                   | 7   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| INT | RODUCTION                                                                                                                                                | 11  |
|     |                                                                                                                                                          |     |
| 1   | Scope                                                                                                                                                    | 15  |
| 2   | Normative references                                                                                                                                     | 15  |
| 3   | Terms and definitions                                                                                                                                    | 15  |
| 4   | Nature of PD in rotating machines                                                                                                                        |     |
|     | 4.1 Basics of PD                                                                                                                                         |     |
|     | 4.2 Types of PD in rotating machines                                                                                                                     | 21  |
|     | 4.3 Pulse propagation in windings                                                                                                                        | 23  |
| 5   | Measuring techniques and instruments                                                                                                                     | 25  |
|     | 5.1 General                                                                                                                                              | 25  |
|     | 5.2 Influence of frequency response of measurement system                                                                                                |     |
|     | 5.3 Effects of PD coupling units                                                                                                                         |     |
|     | 5.4 Wide-band and narrow band measuring systems                                                                                                          |     |
| 6   | Visualization of measurements                                                                                                                            |     |
|     | 6.1 General                                                                                                                                              |     |
|     | 6.2 Minimum scope of PD data presentation                                                                                                                |     |
| _   | 6.3 Additional means of PD data representation                                                                                                           |     |
| 7   | Test circuits                                                                                                                                            |     |
|     | 7.1 General                                                                                                                                              |     |
|     | 7.2 Individual winding components                                                                                                                        |     |
| ^   | 7.3 Complete winding                                                                                                                                     |     |
| 8   | Normalization of measurements                                                                                                                            |     |
|     | 8.1 General                                                                                                                                              |     |
|     | 8.2 Individual winding components                                                                                                                        |     |
| 0   | 8.3 Complete windings                                                                                                                                    |     |
| 9   | ·                                                                                                                                                        |     |
|     | <ul><li>9.1 Acquiring PD measurements on windings and winding components</li><li>9.2 Identifying and locating the source of partial discharges</li></ul> |     |
| 10  | Interpretation of test results                                                                                                                           |     |
| 10  | 10.1 General                                                                                                                                             |     |
|     | 10.1 General                                                                                                                                             |     |
|     | 10.3 PD pattern recognition                                                                                                                              |     |
| 11  | Test report                                                                                                                                              |     |
|     |                                                                                                                                                          |     |
| Anr | nex A (informative) On-line partial discharge measurements                                                                                               | 79  |
|     | nex B (informative) Non-electrical methods of PD detection and methods for                                                                               |     |
|     | alization                                                                                                                                                | 83  |
|     | nex C (informative) External noise, disturbance and sensitivity                                                                                          |     |
|     | nex D (informative) Methods of disturbance suppression                                                                                                   |     |
|     | nex E (informative) Interpretation of PD magnitude data and phase resolved PD                                                                            |     |
|     | terns                                                                                                                                                    | 103 |

| Bibliographie                                                                                                                                                                                                                                                                               | 110 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 1 – Réponse en fréquence d'une impulsion de DP et dispositifs de couplage de                                                                                                                                                                                                         |     |
| différentes constantes de temps                                                                                                                                                                                                                                                             | 26  |
| Figure 2 – Réponses impulsionnelles types de systèmes de mesure de DP à large bande et à bande étroite                                                                                                                                                                                      | 30  |
| Figure 3 – Amplitude des DP en fonction de la tension d'essai normalisée $Q_m = f(U/U_{max})$                                                                                                                                                                                               | 34  |
| Figure 4 – Exemple d'un patron $\phi$ - $q$ - $n$ de décharges partielles où les DP ont été mesurées à l'aide d'un dispositif de couplage monté en série et relié à l'objet soumis à essai, conformément à la Figure 5b, en adoptant un code de couleurs pour le nombre d'impulsions $H(n)$ | 36  |
| Figure 5 – Circuits d'essai conformes à la CEI 60270                                                                                                                                                                                                                                        | 40  |
| Figure 6 – Circuit d'essai destiné à la mesure des DP (S1.1) au niveau d'un enroulement complet                                                                                                                                                                                             | 42  |
| Figure 7 – Normalisation du circuit d'essai pour la mesure S1.1                                                                                                                                                                                                                             | 50  |
| Figure 8 – Tension appliquée à l'objet d'essai durant la mesure des DP                                                                                                                                                                                                                      | 56  |
| Figure 9 – Exemple pour l'identification et la localisation de sources de DP                                                                                                                                                                                                                | 70  |
| Figure C.1 – Mise en charge de l'objet soumis à essai par diverses composantes de courant                                                                                                                                                                                                   | 86  |
| Figure D.1 – Sans masquage des fenêtres                                                                                                                                                                                                                                                     | 90  |
| Figure D.2 – Avec masquage des fenêtres                                                                                                                                                                                                                                                     | 90  |
| Figure D.3 – Courants d'impulsion à travers le circuit de mesure                                                                                                                                                                                                                            | 92  |
| Figure D.4 – Exemple d'élimination de bruit                                                                                                                                                                                                                                                 | 98  |
| Figure D.5 – Exemple d'élimination de la diaphonie                                                                                                                                                                                                                                          | 100 |
| Figure E.1 – Exemple de patrons de DP                                                                                                                                                                                                                                                       | 104 |
| Tableau 1 – Schéma de connexion S1 pour montage en étoile ouvert                                                                                                                                                                                                                            | 44  |
| Tableau 2 – Schéma de connexion S2 pour montage en étoile fermé                                                                                                                                                                                                                             | 44  |
| Tableau 3 – Schéma de connexion E1 pour montage en étoile ouvert                                                                                                                                                                                                                            | 46  |
| Tableau 4 – Schéma de connexion E2 pour montage en étoile fermé                                                                                                                                                                                                                             | 46  |
| Tableau E.1 – Risques associés aux sources principales de DP dans les machines tournantes                                                                                                                                                                                                   | 106 |

| Bibliography                                                                                                                                                                                             | 111 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 1 – Frequency response of a PD pulse and coupling units of various time constants                                                                                                                 | 27  |
| Figure 2 – Typical pulse responses of wide band and narrow band PD systems                                                                                                                               | 31  |
| Figure 3 – PD magnitude as a function of the normalized test voltage $Q_m = f(U/U_{max})$                                                                                                                | 35  |
| Figure 4 – Example of a $\phi$ - $q$ - $n$ partial discharge pattern where the PD was measured in series with the test object in accordance with Figure 5b, with colour code for the pulse number $H(n)$ | 37  |
| Figure 5 – Basic test circuits in accordance with IEC 60270                                                                                                                                              | 41  |
| Figure 6 – Test circuit for PD measurement (S1.1) on complete winding                                                                                                                                    | 43  |
| Figure 7 – Normalization of the test circuit for measurement S1.1                                                                                                                                        | 51  |
| Figure 8 – Test voltage applied to the test object during PD measurement                                                                                                                                 | 57  |
| Figure 9 – Example for identification and localization of PD sources                                                                                                                                     | 71  |
| Figure C.1 – Recharging of the test object by various current components                                                                                                                                 | 87  |
| Figure D.1 – Without window masking                                                                                                                                                                      | 91  |
| Figure D.2 – With window masking                                                                                                                                                                         | 91  |
| Figure D.3 – Pulse currents through the measuring circuit                                                                                                                                                | 93  |
| Figure D.4 – Example of noise rejection                                                                                                                                                                  | 99  |
| Figure D.5 – Example of cross-talk rejection                                                                                                                                                             | 101 |
| Figure E.1 – Example PD patterns                                                                                                                                                                         | 105 |
| Table 1 – Connection diagram S1 for open star point                                                                                                                                                      | 45  |
| Table 2 – Connection diagram S2 for closed star point                                                                                                                                                    | 45  |
| Table 3 – Connection diagram E1 for open star point                                                                                                                                                      | 47  |
| Table 4 – Connection diagram E2 for closed star point                                                                                                                                                    | 47  |
| Table E.1 – Risks associated with the main PD sources in rotating machines                                                                                                                               | 107 |

#### COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

### MACHINES ÉLECTRIQUES TOURNANTES -

Partie 27: Mesures à l'arrêt des décharges partielles effectuées sur le système d'isolation des enroulements statoriques des machines électriques tournantes

#### **AVANT-PROPOS**

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et n'engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La tâche principale des comités d'études de la CEI est l'élaboration des Normes internationales. Exceptionnellement, un comité d'études peut proposer la publication d'une spécification technique

- lorsqu'en dépit de maints efforts, l'accord requis ne peut être réalisé en faveur de la publication d'une Norme internationale, ou
- lorsque le sujet en question est encore en cours de développement technique ou quand, pour une raison quelconque, la possibilité d'un accord pour la publication d'une Norme internationale peut être envisagée pour l'avenir mais pas dans l'immédiat.

Les spécifications techniques font l'objet d'un nouvel examen trois ans au plus tard après leur publication afin de décider éventuellement de leur transformation en Normes internationales.

#### INTERNATIONAL ELECTROTECHNICAL COMMISSION

#### **ROTATING ELECTRICAL MACHINES -**

# Part 27: Off-line partial discharge measurements on the stator winding insulation of rotating electrical machines

#### **FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

La CEI 60034-27, qui est une spécification technique, a été établie par le comité d'études 2 de la CEI: Machines tournantes.

Le texte de cette spécification technique est issu des documents suivants:

| Projet d'enquête | Rapport de vote |
|------------------|-----------------|
| 2/1384/DTS       | 2/1395A/RVC     |

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette spécification technique.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la CEI 60034, sous le titre général *Machines électriques tournantes*, est disponible sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- transformée en Norme internationale,
- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

IEC 60034-27, which is a technical specification, has been prepared by IEC technical committee 2: Rotating machinery.

The text of this technical specification is based on the following documents:

| Enquiry draft | Report on voting |
|---------------|------------------|
| 2/1384/DTS    | 2/1395A/RVC      |

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 60034 series, under the general title *Rotating electrical machines*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · transformed into an International standard,
- · reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

#### INTRODUCTION

Depuis bien des années, la mesure des décharges partielles (DP) a servi comme un moyen précis permettant l'évaluation de la qualité d'un nouveau système d'isolation et comme moyen de détection de sources localisées de DP dans les anciens systèmes d'isolation électrique des enroulements dues aux contraintes opérationnelles en cours de fonctionnement. Comparées à d'autres essais diélectriques (c'est-à-dire la mesure de la tangente de l'angle de pertes ou de la résistance d'isolement), les mesures des décharges partielles offrent une caractéristique distinctive dans la mesure où elles permettent d'identifier les insuffisances localisées du système d'isolation.

Les essais de DP réalisés dans les machines tournantes servent également au contrôle de la qualité de l'assemblage et de la finition de nouveaux enroulements statoriques, de nouveaux composants d'enroulements (par exemple bobines et barres préformées, traversées H.T., etc.) et de stators à imprégnation globale.

En matière d'entretien courant, de dépannage et de révision des machines tournantes, la mesure des décharges partielles peut fournir également des informations sur:

- les faiblesses et insuffisances du système d'isolation;
- les processus de vieillissement;
- les mesures supplémentaires à prendre et les intervalles entre les opérations de révision périodiques.

Bien que les essais réalisés sur les DP dans les machines tournantes soient largement admis et acceptés, plusieurs études ont montré que non seulement il existe de multiples et diverses méthodes de mesure, mais également que les critères et méthodes d'analyse et d'évaluation finale des données mesurées sont souvent très différents et qu'ils ne sont pas réellement comparables. Par conséquent, il existe une nécessité impérieuse qui requiert la mise à disposition de certaines recommandations à l'attention des utilisateurs qui envisagent le recours aux mesures des DP pour les besoins d'évaluation de l'état de leurs systèmes d'isolation.

Les essais relatifs aux décharges partielles dans les enroulements statoriques peuvent être divisés en deux grands groupes:

- a) les mesures à l'arrêt effectuées avec l'enroulement statorique désaccouplé du réseau, une source d'alimentation séparée étant alors utilisé pour la mise sous tension de l'enroulement;
- b) les mesures en fonctionnement effectuées sur le système au cours desquelles la machine tournante est en condition normale de fonctionnement et reliée au réseau.

Ces deux méthodes présentent des avantages et des inconvénients lorsqu'elles sont comparées à une autre. A cet effet, l'Annexe A traite brièvement des mérites des essais en fonctionnement réalisés sur le système ainsi que de leurs inconvénients. Cependant, dans la mesure où l'utilisation des méthodes de mesure en fonctionnement est largement répandue à travers le monde et considérant leur utilité éprouvée pour l'industrie, la présente spécification technique traite exclusivement des techniques de mesure à l'arrêt. Cette approche est jugée nécessaire et elle vise à faire de la présente étude un document condensé et concis qui s'adresse aux non-spécialistes dans le domaine des essais portant sur les DP.

#### INTRODUCTION

For many years, the measurement of partial discharges (PD) has been employed as a sensitive means of assessing the quality of new insulation as well as a means of detecting localized sources of PD in used electrical winding insulation arising from operational stresses in service. Compared with other dielectric tests (i.e. the measurement of dissipation factor or insulation resistance) the differentiating character of partial discharge measurements allows localized weak points of the insulation system to be identified.

The PD testing of rotating machines is also used when inspecting the quality of new assembled and finished stator windings, new winding components (e.g. form-wound coils and bars, HV bushings, etc.) and fully impregnated stators.

In connection with the servicing and overhaul of rotating machines, the measurement of partial discharges can also provide information on:

- points of weakness in the insulation system;
- ageing processes;
- further measures and intervals between overhauls.

Although the PD testing of rotating machines has gained widespread acceptance, it has emerged from several studies that not only are there many different methods of measurement in existence but also the criteria and methods of analysing and finally assessing the measured data are often very different and not really comparable. Consequently, there is an urgent need to give some guidance to those users who are considering the use of PD measurements to assess the condition of their insulation systems.

Partial discharge testing of stator windings can be divided into two broad groups:

- a) off-line measurements, in which the stator winding is isolated from the power system and a separate power supply is employed to energize the winding;
- b) on-line measurements, in which the rotating machine is operating normally and connected to the power system.

Both of these approaches have advantages and disadvantages with respect to one another. A brief discussion of the merits of on-line testing, as well as the drawbacks, is provided in Annex A. However, while acknowledging the extensive world-wide use of on-line methods and their proven value to industry, this technical specification is confined to off-line techniques. This approach is considered necessary to render this specification sufficiently concise to be of use by non-specialists in the field of PD testing.

#### Réserves:

Lors des essais réalisés sur les enroulements statoriques, divers types d'appareils de mesure des DP donneront inévitablement des résultats différents; par conséquent, les mesures des DP ne seront alors comparables que dans certaines conditions. De ce fait, les limites absolues en matière d'enroulements de machines tournantes, telles que par exemple les critères d'acceptation de la production ou d'exploitation, sont difficiles à déterminer. Cela s'explique essentiellement par le phénomène de propagation impulsionnelle, par les difficultés d'étalonnage, par les caractéristiques spécifiques de réponse en fréquence des enroulements statoriques et par les systèmes de mesure des DP.

En outre, la gravité des détériorations, et par conséquent le risque de défaillance du système d'isolation dépendent du type spécifique de source de DP et de son emplacement à l'intérieur du système d'isolation des enroulements statoriques qui peuvent influencer dans une large mesure les résultats des essais.

Les limites empiriques vérifiées dans la pratique peuvent être utilisées comme base d'évaluation des résultats des essais. De plus, il est recommandé de procéder à l'évaluation de l'évolution des DP et à des comparaisons avec d'autres machines de conception similaire et disposant d'un système d'isolation semblable ayant fait l'objet de mesures effectuées dans des conditions similaires en mettant en œuvre les mêmes appareils de mesure, et ce afin d'apprécier de manière fiable l'état du système d'isolation des enroulements statoriques.

Il convient que les utilisateurs des données de mesure des DP soient conscients du fait que compte tenu des principes méthodologiques, la mesure des décharges partielles ne permet pas d'identifier tous les problèmes liés au système d'isolation des enroulements statoriques (par exemple défauts d'isolation impliquant des courants de fuite permanents dus aux interconnexions entre différents éléments du système d'isolation ou à des phénomènes de décharges non impusionnelles).

Pour les essais portant sur les composants individuels des enroulements, les réserves formulées concernant les phénomènes de propagation des impulsions ne sont pas à prendre en considération lors de l'interprétation des résultats de mesure.

#### Limitations:

When stator windings are being tested different types of PD measuring instruments will inevitably produce different results and consequently PD measurements will only be comparable under certain conditions. Therefore, absolute limits for the windings of rotating machines, for example as acceptance criteria for production or operation, are difficult to define. This is mainly due to pulse propagation phenomena, specific difficulties with calibration and the individual frequency response characteristics of stator windings and PD measuring systems.

In addition, the degree of deterioration, and hence the risk of insulation system failure, depends on the specific type of PD source and its location within the stator winding insulation, both of which can influence the test results very significantly.

Empirical limits verified in practice can be used as a basis for evaluating test results. Furthermore, PD trend evaluation and comparisons with machines of similar design and similar insulation system measured under similar conditions, using the same measurement equipment, are recommended to ensure reliable assessment of the condition of the stator winding insulation.

Users of PD measurement should be aware that, due to the principles of the method, not all insulation-related problems in stator windings can be detected by measuring partial discharges (e.g. insulation failures involving continuous leakage currents due to conductive paths between different elements of the insulation or pulseless discharge phenomena).

For testing individual winding components, the limitations due to pulse propagation phenomena need not be considered when interpreting the results of measurements.

#### MACHINES ÉLECTRIQUES TOURNANTES -

# Partie 27: Mesures à l'arrêt des décharges partielles effectuées sur le système d'isolation des enroulements statoriques des machines électriques tournantes

#### 1 Domaine d'application

La présente partie de la CEI 60034 présente des modalités communes concernant

- les techniques de mesure et les appareils de mesure,
- la mise en place des circuits d'essai,
- les procédures de normalisation et les modes opératoires d'essai,
- la réduction du bruit,
- la documentation des résultats des essais,
- l'interprétation des résultats des essais

pour les besoins des mesures à l'arrêt des décharges partielles dans les systèmes d'isolation des enroulements statoriques des machines électriques tournantes soumises à l'essai pour des tensions alternatives à fréquence inférieure ou égale à 400 Hz. Cette spécification technique s'applique aux machines tournantes disposant de barres ou de bobines préformées avec à revêtement conducteur en encoche. Cela est généralement valable pour les machines dont la tension assignée est supérieure ou égale à 6 kV. Les méthodes de mesure décrites dans cette spécification peuvent s'appliquer également aux machines sans revêtement conducteur appliqué aux encoches. Toutefois, les résultats peuvent être différents et ce cas n'est pas traité dans cette spécification.

#### 2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60060-1, Techniques des essais à haute tension – Première partie: Définitions et prescriptions générales relatives aux essais

CEI 60060-2, Techniques des essais à haute tension – Partie 2: Systèmes de mesure

CEI 60270:2000, Techniques des essais à haute tension – Mesures des décharges partielles

#### **ROTATING ELECTRICAL MACHINES –**

# Part 27: Off-line partial discharge measurements on the stator winding insulation of rotating electrical machines

#### 1 Scope

This part of IEC 60034 which is a technical specification provides a common basis for

- measuring techniques and instruments,
- the arrangement of test circuits,
- normalization and testing procedures,
- noise reduction.
- the documentation of test results,
- the interpretation of test results

with respect to partial discharge off-line measurements on the stator winding insulation of rotating electrical machines when tested with alternating voltages up to 400 Hz. This technical specification applies to rotating machines having bars or form wound coils with conductive slot coating. This is usually valid for machines with voltage rating of 6 kV and higher. The measurement methods described in this specification may also be applied to machines without conductive slot coating. However, results may be different and are not covered by this specification.

#### 2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60060-2, High-voltage test techniques – Part 2: Measuring systems

IEC 60270:2000, High-voltage test techniques – Partial discharge measurements