TECHNICAL REPORT

IEC TR 62066

First edition 2002-06

Surge overvoltages and surge protection in low-voltage a.c. power systems – General basic information

Surtensions de choc et protection contre la foudre dans les réseaux à basse tension – Informations générales fondamentales

© IEC 2002 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

PRICE CODE

CONTENTS

FOI	REWC	PRD	7
1	Scop	e	9
2	Reference documents		
3	Defin	itions	10
4	Overvoltages in low-voltage systems		
5	Lightning overvoltages		
	5.1	General	
	5.2	Origin of lightning surge overvoltages	
	5.3	Lightning surges transferred from MV systems	
	5.4	Surges caused by direct flash to LV lines	
	5.5	Lightning surges induced into LV systems	
	5.6	Examples of induced overvoltages	25
	5.7	Overvoltages caused by flashes to the structures or in close vicinity	27
	5.8	Recapitulation on lightning overvoltages	30
6	Switc	hing overvoltages	31
	6.1	General	31
	6.2	Operation of circuit-breakers and switches	35
	6.3	Operation of fuses	37
	6.4	Frequency of occurrence	38
	6.5	Interactions with surge-protective devices	38
	6.6	Recapitulation on switching overvoltages	39
7	Temporary overvoltages		
	7.1	General	40
	7.2	Magnitude of temporary overvoltages due to MV and LV faults	40
	7.3	Temporary overvoltages due to defects in the LV electrical installation	
	7.4	Probability of occurrence and severity of harm	
	7.5	Recapitulation on temporary overvoltage	44
8	System interaction overvoltages		
	8.1	General	44
	8.2	Interaction between power system and communications system	45
	8.3	Other interactions	
	8.4	Recapitulation on system interactions	46
9	Observations on surge overvoltages and failure rates		
	9.1	General	46
	9.2	Using field failure data	47
	9.3	Recapitulation of observations on failure rates	48
10	Cons	iderations on system outage/equipment failure/fires	48
	10.1	General	48
	10.2	Avoiding interference in system operation	49
	10.3	Preventing permanent damage	49
	10.4	Costs of surge-related interruptions and failures	50
	10.5	Recapitulation on outages and failures	52

11	Consi	iderations on the use of surge protection	52	
	11.1	General	52	
	11.2	Power system configuration	52	
	11.3	Types of installation	53	
	11.4	Occurrence of surges	53	
	11.5	SPD disconnector	54	
	11.6	Risk assessment	55	
	11.7	Recapitulation on the need for surge protection	57	
12	Surge protection application			
	12.2	Surge protective devices in power distribution systems	58	
	12.3	Basic system characteristics for SPD selection	59	
	12.4	Considerations for installation of SPDs	64	
		Coordination among SPDs and with equipment to be protected		
	12.6	Recapitulation on surge protection application	67	
Anı	nex A ((informative) Complementary information on lightning-related overvoltages	68	
Anı	nex B ((informative) Switching overvoltages	79	
Anr	nex C ((informative) Complementary information on temporary overvoltages		
Anı	nex D ((informative) Complementary information on system interaction overvoltages		
•		se 8)		
Anı	nex E ((informative) Complementary information on SPD application	102	
		(informative) Avoiding overvoltages through good practice for earthing and	124	
Cal	illig		124	
Bib	liograp	ohy	128	
Fia	ure 1 -	- Examples of lightning flash coupling mechanisms	13	
_		- Examples of lightning flashes to a complex electrical system		
_		Possible waveforms of lightning current striking ground-based objects		
_		- Frequency distribution of peak currents for three types of lightning events		
		– Map of annual thunderstorm days [7]		
_		– Direct flash to an overhead line		
_		- Example of resistive coupling from lightning protection system		
_		- Typical earth coupling mechanisms		
Fig	ure 9 -	 Typical overvoltages induced on an LV line by a near lightning flash 	24	
		Example of estimated frequency of occurrence of prospective induced		
_	-	overvoltages on LV overhead lines		
_		- Model of distribution system used in the simulation	26	
		! – Model for computing dispersion of lightning current arallel buildings in an example of TN-C system	20	
	• .	B – Generation of overvoltage by switching an RLC circuit		
		- Typical switching overvoltages		
_		i – Example of a high-frequency switching surge		
		5 – Distribution of the rate of rise of switching surges at different locations		
_		' – Distribution of the rate of rise of switching surges at different locations		
_		B – Rate of rise of the switching surges and their crest values		
		Distribution of the duration of the switching surges	35	

Figure 20 – Example of distribution of switching surge amplitudes measured in industrial distribution systems rated 230/400 V	36
Figure 21 – Switching surge during interruption by a miniature fuse [48]	
Figure 22 – Switching surge during interruption by a miniature ruse [46]	30
of switching surges at different installations	39
Figure 23 – PC/modem connections to the power system	
and to the communications system	46
Figure 24 – Example of diversion of lightning current	
into the external services (TT system)	
Figure 25 – Considerations required for the selection of an SPD	
Figure 26 – Effect of additional connecting lead on the limiting voltage of a varistor	
Figure 27 – Basic model for energy coordination of SPDs	
Figure A.1 – Frequency distribution of the lightning peak current I_{max}	
Figure A.2 – Frequency distribution of the total lightning charge Q_{total}	
Figure A.3 – Frequency distribution of the transient lightning charge Q_{trans}	
Figure A.4 – Frequency distribution of the specific lightning energy W/R	
Figure A.5 – Frequency distribution of the maximum slope of transient current $(di/dt)_{max}$	70
Figure A.6 – Frequency distribution of the slope of current $(di/dt)_{30/90}$ %	74
of negative subsequent strokes	
Figure A.7 – Simplified example with lightning flash to overhead LV line	/ 1
Figure A.8 – Prospective voltages between line and true earth at point of strike (node 1), at the transformer (node 2) and at the neutral conductor in the consumer installation	
(node 3)	72
Figure A.9 – Prospective voltages relative to true earth at node 3 and at node 4	72
Figure A.10 – Current to earth at the point of strike (node 1), at the transformer (node 2),	
and at the consumer installation (node 3)	72
Figure A.11 – Distribution of overvoltage peak magnitudes recorded at the primary	
of an MV/LV transformer	
Figure A.12 – Circuit used for the statistical computation	/4
Figure A.13 – Comparison of measured overvoltages [51] and computed overvoltages (Anastasia)	74
Figure A.14 – Model for computing dispersion of lightning current among parallel	,
buildings (TN-C system) [24]	75
Figure A.15 – Dispersion of lightning current among the paths defined in figure A.14	
Figure A.16 – Model for computing dispersion of lightning current among parallel buildings	
(TN-C system, Building 2 with no LPS and no SPDs at the service entrance) [24]	
Figure A.17 – Currents and voltage for the example of figure A.16	77
Figure B.1 – Example illustrating transient resonance caused by switching	80
Figure B.2 – Calculated overvoltages at the circuit nodes of figure B.1	80
Figure B.3 – Typical overvoltage occurring during capacitor bank energizing	
Figure B.4a – Magnification condition	
Figure B.4b – Voltage magnification effect	82
Figure B.4 – Magnification of capacitor switching overvoltage at remote bank	82
Figure B.5 – Principle of overvoltage generated by clearing a short-circuit	83
Figure B.6 – Example of survey of switching overvoltages in three types of installations	85
Figure B.7 – Switching surges in an industrial plant measured near the collecting bar	
Figure B.8 – Frequency of occurrence at selected sites and overall results	88
Figure B.9 – Test circuit and surge during trip of a miniature breaker	00
due to inrush overload	90
Figure B.10 – Example of overvoltage at the secondary collecting bar of a 230/400 V transformer substation when blowing 100 A fuses of a feeder	92

in a distribution system – Short circuit near a feeder fuse	93
Figure B.12 – Overvoltage in a distribution system depending on the cable length for different fuse ratings – Short circuit at the end of the cable	
Figure C.1 – Temporary overvoltage resulting from a fault in the primary of the distribution transformer in a TN system according to North American practice	96
Figure D.1 – PC/modem connections to the power system and communications system.	
Figure D.2 – Voltage difference appearing across PC/modem during surge current flow .	
Figure D.3 – Voltage recorded across reference points for the PC/modem during a surge	
Figure D.4 – Insertion of a surge reference equalizer at the PC/modem ports	
Figure D.5 – Reduction of voltage difference between ports by a surge reference equalizer	101
Figure E.1 – Example of coordination for two voltage-limiting SPDs (MOV1 and MOV2).	103
Figure E.2 – Comparison of the <i>I/V</i> characteristics of the two MOVs	
Figure E.3 – Current and voltage versus time characteristics for the two voltage-limiting SPDs	
Figure E.4 – Energy distribution among two voltage-limiting SPDs versus impinging current	
Figure E.5 – Idealized example for illustrating SPD coordination aspects	
Figure E.6 – Calculated SPD voltages and current for a 2/20 µs impulse injected in node 1.	
	100
Figure E.7 – Calculated SPD voltages and current for a 10/350 µs impulse injected in node 2	106
Figure E.8 – Calculated SPD voltages and current for a 10/350 µs impulse injected in node 1	107
Figure E.9 – Example of coordination between a voltage-switching SPD and a voltage-limiting SPD	107
Figure E.10 – Current and voltage characteristics in the scheme of figure E.9 for no sparkover	108
Figure E.11 – Current and voltage characteristics in the scheme of figure E.9 with sparkover	109
Figure E.12 – Voltage U_{SG} at spark gap depending on different loads	109
Figure E.13 – Coordination of two SPDs (voltage-switching type)	110
Figure E.14 – Two ZnO varistors with the same nominal discharge current	111
Figure E.15 – Two ZnO varistors with different nominal discharge currents	113
Figure E.16 – Coordination principle for variant I	115
Figure E.17 – Coordination principle for variant II	116
Figure E.18 – Coordination principale for variant III	116
Figure E.19 – Coordination principle for variant IV	
Figure E.20 – Let-through energy method with standard pulse parameters	
Figure E.21 – Steepness factor for a surge-current waveform	120
Figure F.1 – EMC cabinet protects electronic equipment against common-mode currents through cables	
Figure F.2 – Coupling of common-mode overvoltage caused by switching surges	
Figure F.3 – Voltages measured in the control room on a cable shorted at the other end, at the top of the transformer. The common-mode currents are indicated	
for the various parallel earth conductors between A and C.	127
Table 1 – Attributes and effects of lightning flashes	14
Table 2 – Statistics of the significant parameters of lightning events	
Table 3 – Line-to-earth prospective overvoltage levels in the LV installation,	
occurrences per year	26

of figure 12 (10/350 µs, 100 kA)	29
Table 5 – Time to half-value of the switching surges versus rated current of miniature fuses	37
Table 6 - Maximum values of overvoltages allowed to occur during MV faults to earth	41
Table 7 – Possible protection modes	64
Table B.1 – Minimum, maximum and mean values of the amplitude and rate of rise of the recorded switching surges at different locations [48][48]	85
Table B.2 – Distribution of recorded transients	86
Table B.3 – Measurement points and results of the long range measurement (second part) [1]	88
Table B.4 – Amplitude and rate of rise of switching surges versus rated current of miniature circuit breakers [48]	90
Table C.1 – Maximum values of overvoltages allowed to occur during MV-faults to earth	94
Table C.2 – Maximum possible values for TOVs in LV-installations due to LV-faults	95
Table E.1 – Inductance necessary to ensure gap sparkover	110
Table E.2 – Normalized values	118
Table E.3 – Reference table	
Table E.4 – Equivalent values	118
Table E.5 – Example of coordination between two SPDs tested according to Class II	122
Table E.6 – Example of coordination between an SPD tested according to Class I	
and an SPD tested according to Class II	122
Table F.7 – Parameters for Class I tests (IFC 61643-1)	123

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SURGE OVERVOLTAGES AND SURGE PROTECTION IN LOW-VOLTAGE AC POWER SYSTEMS – GENERAL BASIC INFORMATION

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this technical report may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 62066, which is a technical report, has been prepared by Technical Committee 64: Electrical installations and protection against electric shock.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
64/1125/CDV	64/1163/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

The committee has decided that the contents of this publication will remain unchanged until 2006. At this date, the publication will be

- reconfirmed;
- withdrawn;
- · replaced by a revised edition, or
- amended.

This document, which is purely informative, is not to be regarded as an International Standard.

A bilingual version of this document may be issued at a later date.

SURGE OVERVOLTAGES AND SURGE PROTECTION IN LOW-VOLTAGE AC POWER SYSTEMS – GENERAL BASIC INFORMATION

1 Scope

IEC 62066 is a technical report that presents a general overview on the different kinds of surge overvoltages that can occur on low-voltage installations. Typical surge magnitude and duration as well as frequency of occurrence are described. Information on overvoltages resulting from interactions between power system and communications system is also provided.

Additionally, general guidelines are given concerning surge protection means and systems on the basis of availability and risk considerations, including interactions and the need for coordination and consideration of temporary overvoltages in the selection of surge-protective devices.

2 Reference documents

IEC 60364-4-44:2001, Electrical installations of buildings – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances

IEC 60364-5-53:2001, Electrical installations of buildings – Part 5-53: Selection and erection of electrical equipment – Isolation, switching and control

IEC 60664-1:1992, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests
Amendment 1 (2000)

IEC/TR 61000-2-5:1995, Electromagnetic compatibility (EMC) – Part 2: Environment – Section 5: Classification of electromagnetic environments. Basic EMC publication

IEC 61000-4-1:2000, Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Overview of IEC 61000-4 series

IEC 61000-4-4:1995, Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 4: Electrical fast transient/burst immunity test. Basic EMC publication

IEC 61000-4-5:1995, Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 5: Surge immunity test
Amendment 1 (2000)

IEC/TR 61000-5-2:1997, Electromagnetic compatibility (EMC) – Part 5: Installation and mitigation guidelines – Section 2: Earthing and cabling

IEC 61024-1:1990, Protection of structures against lightning – Part 1: General principles

IEC 61024-1-1:1993, Protection of structures against lightning – Part 1: General principles – Section 1: Guide A – Selection of protection levels for lightning protection systems

IEC 61312-1:1995, Protection against lightning electromagnetic impulse – Part 1: General principles

IEC/TS 61312-3:2000, Protection against lightning electromagnetic impulse – Part 3: Requirements of surge protective devices (SPDs)

IEC 61643-1:1998, Surge protective devices connected to low-voltage power distribution systems – Part 1: Performance requirements and testing methods

IEC 61643-12:2002, Low-voltage surge protective devices – Part 12: Surge protective devices connected to low-voltage power distribution systems – Selection and application principles

IEC 61662:1995, Assessment of the risk of damage due to lightning Amendment 1 (1996)

IEC 61663-2:2001, Lightning protection – Telecommunications lines – Part 2: Lines using metallic conductors

ITU-T K.20, Resistibility of telecommunication equipment installed in a telecommunications centre to overvoltages and overcurrents

ITU-T K.21, Resistibility of telecommunication equipment installed in customers' premises to overvoltages and overcurrents

IEEE 1036:1992, Guide for application of shunt power capacitors

NOTE Other documents are listed in the bibliography, which includes documents that were used in developing the present report, documents cited in support of a recommendation, and documents suggested as further reading for information.