BS EN 60034-18-41:2014+A1:2019

BSI Standards Publication

Rotating electrical machines

Part 18-41: Partial discharge free electrical insulation systems (Type I) used in rotating electrical machines fed from voltage converters - Qualification and quality control tests

National foreword

This British Standard is the UK implementation of EN 60034-18-41:2014+A1:2019. It is identical to IEC 60034-18-41:2014, incorporating amendment 1:2019. It supersedes BS EN 60034-18-41:2014, which is withdrawn.

The start and finish of text introduced or altered by amendment is indicated in the text by tags. Tags indicating changes to IEC text carry the number of the IEC amendment. For example, text altered by IEC amendment 1 is indicated by $\boxed{\text{A}}$

The UK participation in its preparation was entrusted to Technical Committee PEL/2, Rotating electrical machinery.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2019 Published by BSI Standards Limited 2019

ISBN 978 0 580 94424 6

ICS 29.160.01

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2014.

Amendments/corrigenda issued since publication

Date	Text affected
31 October 2019	Implementation of IEC amendment 1:2019 with CENELEC endorsement A1:2019

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 60034-18-41:2014+A1

September 2019

ICS 29.160.01

English Version

Rotating electrical machines - Part 18-41: Partial discharge free electrical insulation systems (Type I) used in rotating electrical machines fed from voltage converters - Qualification and quality control tests (IEC 60034-18-41:2014)

Machines électriques tournantes - Partie 18-41: Systèmes d'isolation électrique sans décharge partielle (Type I) utilisés dans des machines électriques tournantes alimentées par des convertisseurs de tension - Essais de qualification et de contrôle qualité (CEI 60034-18-41:2014) Drehende elektrische Maschinen - Teil 18-41: Qualifizierung und Qualitätsprüfungen für teilentladungsfreie elektrische Isoliersysteme (Typ I) in drehenden elektrischen Maschinen, die von Spannungsumrichtern gespeist werden (IEC 60034-18-41:2014)

This European Standard was approved by CENELEC on 2014-04-10. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2019 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

European foreword

The text of document 2/1728/FDIS, future edition 1 of IEC 60034-18-41, prepared by IEC/TC 2 "Rotating machinery" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60034-18-41:2014.

The following dates are fixed:

the document have to be withdrawn

-	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2015-01-10
_	latest date by which the national standards conflicting with	(dow)	2017-04-10

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60034-18-41:2014 was approved by CENELEC as a European Standard without any modification.

Foreword to amendment A1

The text of document 2/1949/FDIS, future IEC 60034-18-41/A1, prepared by IEC/TC 2 "Rotating machinery" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60034-18-41:2014/A1:2019.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2020-04-30 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2022-07-30 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60034-18-41:2014/A1:2019 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

IEC 60034-1 NOTE Harmonized as EN 60034-1

CONTENTS

FOR	REWORD			5
INTE	RODUCT	ION		7
1	Scope			9
2	Normativ	ve referenc	es	9
3	Terms a	nd definitio	ns	10
4	Machine	terminal v	oltages arising from converter operation	13
5	Electrica	al stresses	in the insulation system of machine windings	17
	5.1			
	5.2		tressing the phase/phase insulation	
	5.3	-	tressing the phase/ground insulation	
	5.4	Voltages s	tressing the turn and strand insulation	18
	5.5	Mechanisr	ns of insulation degradation	19
6	Types of	f machine i	nsulation	20
7	Stress c	ategories f	or Type I insulation systems used in converter fed machines	20
8	Design o	qualificatior	n and type tests for Type I insulation systems	22
	8.1	General		22
	8.2	Design qu	alification test	22
	8.3	Type test.		22
9	Test equ	uipment		22
	9.1	PD measu	rement at power frequency	22
	9.2	PD measu	rement during voltage impulses	22
	9.3	Voltage im	ipulse generators	23
	9.4	Sensitivity	·	23
	9.5			
		9.5.1	Power frequency voltage	
		9.5.2	Impulse excitation	
10			design of Type I insulation systems	
	10.1			
	10.2			
			General	
		10.2.2	Twisted pair or equivalent arrangement	
		10.2.3 10.2.4	Motorette (random wound) or formette (form-wound) Complete windings	
	10.3	-	n of test objects	
	10.5	10.3.1	General	
		10.3.2	Turn/turn insulation samples	
		10.3.3	Motorette/formette test samples or complete windings	
	10.4	Design qu	alification tests	
		10.4.1	General	26
		10.4.2	Pre-diagnostic tests	26
		10.4.3	Diagnostic tests	26
		10.4.4	Ageing cycle	26
		10.4.5	PD tests	
	10.5		rion for the design qualification test	
11	Type tes	st procedur	e for Type I insulation systems	27

	11.1	General	27
	11.2	Power frequency PD tests	27
	11.3	Impulse PD tests	28
12	Routine	tests	28
	12.1	Optional PD test	28
	12.2	Routine withstand voltage test	28
13	Analysis	, reporting and classification	29
		ormative) Derivation of possible terminal voltages in service for a machine	30
	A.1	Calculation of d.c. bus voltage	30
	A.2	Calculation of maximum peak voltages for a 2-level converter	31
Ann	ex B (nor	mative) Derivation of test voltages for Type I insulation systems	33
	B.1	Stress categories	33
	B.2	Requirements for the applied impulse voltage	33
	B.3	Enhancement factors for PD tests	34
	B.4	Voltage for design qualification and type tests	36
	B.5	Examples of maximum peak/peak operating voltages	
	B.6	Calculation of test voltages	
Ann	ex C (nor	mative) Derivation of allowable voltages in service	41
	C.1	Impulse voltage insulation class (IVIC) of the machine	41
	C.2	Impulse voltage insulation class assigned in special designs	41
		ormative) Derivation of routine withstand test voltages and an example for I machine	43
	• • • • • • • •		
Bibli	ography.		44
Bibli Figu Figu	ography. re 1 – Vo re 2 – Fi		44 13
Bibli Figu Figu leve Figu	ography. re 1 – Vo re 2 – Fi I convert re 3 – Ju	oltage impulse waveshape parameters ve step phase to phase voltage at the terminals of a machine fed by a 3- er mp voltage (<i>U</i> _i) at the machine terminals associated with a converter	44 13 15
Bibli Figu Figu leve Figu drive	ography. re 1 – Vo re 2 – Fi I convert re 3 – Ju e re 4 – Vo	oltage impulse waveshape parameters we step phase to phase voltage at the terminals of a machine fed by a 3- er mp voltage (U_j) at the machine terminals associated with a converter oltage enhancement at the terminals of a motor due to reflection as a	44 13 15 15
Bibli Figu Figu leve Figu drive Figu func	ography. re 1 – Vo re 2 – Fi I convert re 3 – Ju e re 4 – Vo tion of ca	Pltage impulse waveshape parameters ve step phase to phase voltage at the terminals of a machine fed by a 3- er mp voltage (U_j) at the machine terminals associated with a converter pltage enhancement at the terminals of a motor due to reflection as a uble length for various impulse rise times	44 13 15 15 17
Bibli Figu Ieve Figu drive Figu func	ography. re 1 – Vo re 2 – Fi I convert re 3 – Ju e re 4 – Vo tion of ca re 5 – E>	oltage impulse waveshape parameters we step phase to phase voltage at the terminals of a machine fed by a 3- er mp voltage (<i>U</i> _j) at the machine terminals associated with a converter oltage enhancement at the terminals of a motor due to reflection as a uble length for various impulse rise times	44 13 15 15 17 18
Bibli Figu leve Figu drive Figu func Figu	ography. re 1 – Vo re 2 – Fi I convert re 3 – Ju re 3 – Ju re 5 – Ex re 5 – Ex re 6 – Ex	oltage impulse waveshape parameters	44 13 15 15 17 18
Bibli Figu Ieve Figu drive Figu func Figu Figu	ography. re 1 – Vo re 2 – Fi I convert re 3 – Ju e re 4 – Vo tion of ca re 5 – Ex re 6 – Ex re 7 – W	oltage impulse waveshape parameters we step phase to phase voltage at the terminals of a machine fed by a 3- er mp voltage (<i>U</i> _j) at the machine terminals associated with a converter oltage enhancement at the terminals of a motor due to reflection as a uble length for various impulse rise times	44 13 15 15 17 18 18
Bibli Figu Ieve Figu drive Figu Figu Figu Wou	ography. re 1 – Vo re 2 – Fi I convert re 3 – Ju : re 4 – Vo tion of ca re 5 – E> re 6 – E> re 7 – W nd stator	oltage impulse waveshape parameters	44 13 15 15 17 18 18 19
Bibli Figu leve Figu drive Figu func Figu Figu Figu Figu	ography. re 1 – Vo re 2 – Fi l convert re 3 – Ju e re 4 – Vo tion of ca re 5 – E> re 6 – E> re 6 – E> re 7 – W nd stator re A.1 –	oltage impulse waveshape parameters	44 13 15 15 17 18 18 19 30
Bibli Figu Ieve Figu drive Figu Figu Figu Figu Figu Figu	ography. re 1 – Vo re 2 – Fi I convert re 3 – Ju e 3 – Ju re 4 – Vo tion of ca re 5 – E> re 6 – E> re 7 – W nd stator re A.1 – re B.1 –	bltage impulse waveshape parameters	44 13 15 15 15 18 18 19 30 34
Bibli Figu Figu drive Figu func Figu Figu Figu Figu Figu Figu	ography. re 1 – Vo re 2 – Fi l convert re 3 – Ju re 3 – Ju re 4 – Vo tion of ca re 5 – E> re 6 – E> re 6 – E> re 7 – W nd stator re A.1 – re B.1 – re B.2 – re B.3 –	oltage impulse waveshape parameters	44 13 15 15 17 18 18 19 30 34 34
Bibli Figu Figu drive Figu func Figu Figu Figu Figu Figu 2-lev Figu	ography. re 1 – Vo re 2 – Fi l convert re 3 – Ju re 3 – Ju re 4 – Vo tion of ca re 5 – Ex re 6 – Ex re 7 – W nd stator re 8.1 – re 8.2 – re 8.3 – vel conve re 8.4 –	bltage impulse waveshape parameters	44 13 15 15 15 17 18 18 30 34 34 36
Bibli Figu Figu drive Figu func Figu Figu Figu Figu Figu Figu Figu Figu	ography. re 1 – Vo re 2 – Fi l converter re 3 – Ju re 3 – Ju re 4 – Vo tion of ca re 5 – Ex re 6 – Ex re 6 – Ex re 7 – W nd stator re 8.1 – re 8.2 – re 8.3 – vel conve re 8.4 – (/peak vo re 8.5 –	oltage impulse waveshape parametersve step phase to phase voltage at the terminals of a machine fed by a 3- er	44 13 15 15 15 17 18 18 30 34 34 34 36 37

Table 1 – Common ranges of characteristics of the terminal voltages of converter fed
machines

Table 2 – Definition of symbols	14
Table 3 – Influence of features of the machine terminal voltage on components of TypeI insulation systems	21
Table 4 – Stress categories for Type I insulation systems based on a 2-level converter	21
Table 5 – Allowable voltage waveforms for testing system components	25
Table A.1 – Examples of maximum peak voltages	32
Table B.1 – Summary of stress categories	33
Table B.2 – Summary of enhancement factors to be applied to the operating voltages	35
Table B.3 – Maximum peak/peak operating voltages related to U_{dc} for a 2-level converter according to the stress categories of Table 4	37
Table B.4 – Examples of maximum peak/peak operating voltage for a 500 V r.m.s. rated winding fed from a 2-level converter, according to the stress categories of Table 4.	38
Table B.5 – Examples of maximum peak/peak PD-test voltage for a 500 V rated winding fed, e.g. from a 2-level converter, according to the stress categories of Table 4 and with EF 1,25	39
Table B.6 – Turn/turn PD test levels for special windings and twisted pairs	40
Table C.1 – Maximum allowable operating voltage at the machine terminals in units of $U_{\sf N}$	41
Table D.1 – Withstand test voltages according to IVIC for Type I insulation systems	43

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ROTATING ELECTRICAL MACHINES –

Part 18-41: Partial discharge free electrical insulation systems (Type I) used in rotating electrical machines fed from voltage converters – Qualification and quality control tests

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60034-18-41 has been prepared by IEC technical committee 2: Rotating machinery.

IEC 60034-18-41 cancels and replaces IEC/TS 60034-18-41 (2006).

The text of this standard is based on the following documents:

FDIS	Report on voting
2/1728/FDIS	2/1738/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

NOTE A table of cross-references of all IEC TC 2 publications can be found in the IEC TC 2 dashboard on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

INTRODUCTION

The approval of electrical insulation systems for use in rotating electrical machines driven from voltage converters is set out in two IEC documents. They divide the systems into those which are not expected to experience partial discharge activity within specified conditions in their service lives (Type I) and those which are expected to withstand partial discharge activity in any part of the insulation system throughout their service lives (Type II). For both Type I and Type II insulation systems, the drive system integrator (the person responsible for co-ordinating the electrical performance of the entire drive system) shall inform the machine manufacturer what voltage will appear at the machine terminals in service. The machine manufacturer will then decide upon the severity of the tests appropriate for qualifying the insulation system. The severity is based on the impulse rise time, the peak to peak voltage and, in the case of Type II systems, the impulse repetition rate. After installation of the converter/machine system, it is recommended that the drive system integrator measures the phase/phase and phase/ground voltages between the machine terminals and ground to check for compliance.

IEC 60034-18-41

The Type I systems are dealt with in this standard. They are generally used in rotating machines rated at 700 V r.m.s. or less and tend to have random wound windings. The procedures described here are directed at:

- Qualification of the insulation system.
- Type and routine testing of the complete windings of service machines.

Before undertaking any testing, the machine manufacturer shall decide upon the level of severity that the system will be required to withstand. The severity is based on how large the voltage overshoot and how short the impulse rise time will be at the machine terminals. The machine designer then makes a choice from a table in which the range of expected overshoot voltage is divided into bands. Testing is performed at the extreme value of each band. A default value of 0,3 μ s is attributed to the impulse rise time. Other values of impulse rise time or voltage overshoot are dealt with as special cases.

In qualification testing, the insulation system is used to construct various representative test objects. These are subjected to the range of tests described in IEC 60034-18-21 or IEC 60034-18-31 with the addition of a high frequency voltage test and a partial discharge test. For the latter, it may be necessary to use impulse test equipment, as described in IEC/TS 61934. If the test object is partial discharge free under the specified test conditions at the end of the sequence of testing, the insulation system is qualified for the severity band that has been selected.

Type and optional routine tests are performed on complete windings to demonstrate that they are partial discharge free under sinewave or impulse voltage conditions (as appropriate) for the band of severity that the manufacturer has chosen. An impulse voltage insulation class is then assigned to the machine. A mechanism is described for dealing with special cases.

IEC/TS 60034-18-42

The tests for qualification and acceptance of electrical insulation systems chosen for Type II rotating electrical machines are described in this technical specification. These insulation systems are generally used in rotating machines and tend to have form-wound coils, mostly rated above 700 V r.m.s. The qualification procedure is completely different from that used for Type I insulation systems and involves destructive ageing of insulated test objects under accelerated conditions. The rotating machine manufacturer requires a life curve for the insulation system that can be interpreted to provide an estimate of life under the service conditions with converter drive. Great importance is attached to the qualification of any stress grading system that is used and testing here should be performed under repetitive impulse conditions. If the insulation system can be shown to provide an acceptable life under the

appropriate ageing conditions, it is qualified for use. Acceptance testing is performed on coils made using this insulation system when subjected to a voltage endurance test.

ROTATING ELECTRICAL MACHINES –

Part 18-41: Partial discharge free electrical insulation systems (Type I) used in rotating electrical machines fed from voltage converters – Qualification and quality control tests

1 Scope

This part of IEC 60034 defines criteria for assessing the insulation system of stator/rotor windings which are subjected to voltage-source pulse-width-modulation (PWM) drives. It applies to stator/rotor windings of single or polyphase AC machines with insulation systems for converter operation.

It describes qualification tests and quality control (type and routine) tests on representative samples or on completed machines which verify fitness for operation with voltage source converters.

This standard does not apply to:

- rotating machines which are only started by converters;
- rotating electrical machines with rated voltage ≤ 300 V r.m.s.;
- rotor windings of rotating electrical machines operating at \leq 200 V (peak).

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60034-18-1:2010, Rotating electrical machines – Part 18-1: Functional evaluation of insulation systems – General guidelines

IEC 60034-18-21, Rotating electrical machines – Part 18-21: Functional evaluation of insulation systems – Test procedures for wire-wound windings – Thermal evaluation and classification

IEC 60034-18-31, Rotating electrical machines – Part 18-31: Functional evaluation of insulation systems – Test procedures for form-wound windings – Thermal evaluation and classification of insulation systems used in rotating machines

IEC/TS 60034-18-42, Rotating electrical machines – Part 18-42: Qualification and acceptance tests for partial discharge resistant electrical insulation systems (Type II) used in rotating electrical machines fed from voltage converters¹

IEC/TS 60034-25:2007, Rotating electrical machines – Part 25: Guidance for the design and performance of a.c. motors specifically designed for converter supply

¹ This TS is in the process of being transformed into an IS.