

Performance Requirements for Hose Connection Backflow Preventers

ASSE Board Approved: September 2023

ANSI Approved: December 2023

ICS Codes: 23.060.99

General Information

Neither this standard, nor any portion thereof, may be reproduced without the written consent of the American Society of Sanitary Engineering.

No product may be said to be ASSE approved unless the manufacturer has applied to the ASSE has had his product tested according to the applicable ASSE Standards, and when the product has passed the test, displays the ASSE Seal on the product.

Instructions for receiving the authorization to display the Seal are available from ASSE's International Office. Organizations wishing to adopt or list any ASSE Standard should print the ASSE Standard number on the cover page first and in equal or larger type to that of the adopting or listing organization.

ASSE International
Mokena, Illinois
Copyright © 2023, 2016, 2004, 1993
All rights reserved.

Foreword

This foreword shall not be considered a part of the standard; however, it is offered to provide background information.

ASSE standards are developed in the interest of consumer safety.

ASSE International considers product performance standards to be of great value in the development of improved plumbing systems.

The working group that developed this standard was set up within the framework of the Product Standards Committee of ASSE International.

Recognition is made of the time volunteered by members of this working group and of the support of manufacturers who also participated in meetings for this standard.

This standard does not imply ASSE International's endorsement of a product which conforms to these requirements. Preventing the contamination of potable water in plumbing systems is a major objective of ASSE's Standards Program. ASSE addressed the need for backflow protection at hose threaded outlets, where attaching a common garden hose or utility hose may expose users to highly dangerous conditions. Hose threaded protective devices shall only be used on systems where the low-head backpressure does not exceed that generated by an elevated hose equal to or less than 10 feet (3.0 m) in height.

The ASSE 1011 for *Hose Connection Vacuum Breakers* covers devices containing a single check valve and an atmospheric vent valve. This standard, ASSE 1052, focuses on devices containing two check valves which are known as *Hose Connection Backflow Preventers*. Backsiphonage and backpressure protection are achieved by adding the safety factor of a second check valve to the protection already provided by ASSE 1011, the single check Hose Bibb Vacuum Breaker. The two check device:

- meets the ASSE definition of a backflow prevention device;
- provides protection against the high hazard conditions of backsiphonage and low-head backpressure; and
- allows a field test to be performed.

It is essential that regular inspection and maintenance of backflow prevention devices be conducted in order to assure that the devices are continuously in working condition to prevent backflow.

This standard is part of the Vacuum Breaker Group, which includes:

ASSE 1001 – Performance requirements for Atmospheric Type Vacuum Breakers;

ASSE 1004 – Backflow Prevention Requirements for Commercial Dishwashing Machines;

ASSE 1011 – Performance requirements for Hose Connection Vacuum Breakers;

ASSE 1052 – Performance requirements for Hose Connection Backflow Preventers.

Not all devices are appropriate in all cases. Below in Table A is a reference chart whereby the reader can find the most suitable standard for his or her needs.

Table A

ASSE Standard No.	Standard Name	Typical use	Highlights	Types Within the Standard
1001	Atmospheric Type Vacuum Breakers	Faucet with Hose thread spout Water Closet Fill Valve	Prevents Backsiphonage: - Have its outlet open to atmosphere; - Not be subjected to backpressure; - Not be subjected to more than twelve (12) hours of continuous water pressure	 Atmospheric type Check valve member and an air vent that is normally closed when the device is pressurized
1004	Backflow Prevention for Commercial Dishwashers	Commercial Dishwashers	Prevent backsiphonage at high temperatures. No direct contact with washing fluid.	 Air gap per ASME A112.1.3 Atmospheric vacuum breaker per ASSE 1001 Hose connection vacuum breaker per ASSE 1011 Hose connection backflow preventer per ASSE 1052
1011	Hose Connection Vacuum Breakers	Hose Connections such as Hose Bib, Wall Hydrant, Yard hydrant	Prevents Backflow by use of a SINGLE CHECK valve, Prevents Back Siphonage by use of AIR PORTS, Prevents Back Pressure by use of check valve and relief of Back pressure through air ports. I.e. relieves pressure in the hose. Device is non removable and nontestable.	Only one type
1052	Hose Connection Backflow Preventers	Hose Connections such as Hose Bib, Wall Hydrant, Yard hydrant	Same as a 1011 device except there are two check valves. One check valve holds the pressure in the hose. The Intermediate chamber between check vales becomes atmospheric. Device is non removable but is testable.	Only one type

Table B

ASSE Standard No.	Single Check	Dual Check	Air Ports	Back Flow	Back Siphonage	Back Pressure	Frost Free	Removable	Testable	High Hazard
1001	N	N	Υ	N	Υ	N	N	N	N	Υ
1004	ASME A112.1.3 air gap, ASSE 1001, 1011, or 1052 device is installed as a sub-assembly for backflow protection.									
1011	Υ	N	Υ	Υ	Υ	Υ	N	N	N	Υ
1052	N	Υ	Υ	Υ	Υ	Υ	N	N	Υ	Υ

Compliance with this standard does not imply acceptance by any code body.

It is recommended that these devices be installed consistent with local codes by qualified and trained professionals.

This standard was promulgated in accordance with procedures developed by the American National Standards Institute (ANSI).

2023 Product Standards Committee

Tsan-Liang Su, PhD – Chairman Stevens Institute of Technology Hoboken, NJ, USA

Karl Abrahamson

Saint Paul Department of Safety and Inspections Cottage Grove, MN, USA

John Bertrand

Watts Water Technologies Cleveland, OH, USA

Julia Briggs

NSF International Ann Arbor, MI, USA

William Briggs Jr.

TSF Engineering New York, NY, USA

Terry Burger (non-voting)

ASSE International Cleveland, OH, USA

William Chapin

Professional Code Consulting, LLC Cullman, AL, USA

Steve Ducharme

Piping Industry Technical College/UA 254 Winnipeg, MB, Canada

Mark E. Fish

Zurn Industries, LLC Cary, NC, USA

Fernando Fernandez

Toto USA Inc. Ontario, CA, USA

Ron George

Plumb-Tech Design & Consulting Services LLC Newport, MI, USA

Mark Gibeault

Kohler Company Kohler, WI, USA

Daniel Gleiberman

Sloan Valve Company Los Angeles, CA, USA

Brandon Gunnell

Precision Plumbing Products Portland, OR, USA

Chris Haldiman

Watts Water Technologies Springfield, MO, USA

Kevin Hardwick

Precision Plumbing Products Portland, OR, USA

John F. Higdon, P.E.

Merit Brass Company Matthews, NC, USA

Mike Johnson

Delta Faucet Indianapolis, IN, USA

Jim Kendzel

American Supply Association Itasca, IL, USA

Anthony Menafro

State of NJ Department of Community Affairs Trenton, NJ, USA

Bob Neff

Delta Faucet Pendleton, IN, USA

David Orton

NSF International Ann Arbor, MI, USA

Thomas Pitcherello

Self

Bordentown, NJ, USA

Daniel Rademacher

Viega, LLC Butte, MT, USA

Shabbir Rawalpindiwala

Self

Kohler, WI, USA

Billy Smith

ASPE

Montgomery, AL, USA

Chris Wright

Ontario Pipe Trades Council Dundalk, ON, Canda

Chris White (non-voting)

ASSE International Mokena, IL, USA

Vacuum Breaker Working Group

John Bertrand

Watts Water Technologies Cleveland, OH, USA

Scott Brady

Prier Products Grandview, MO, USA

Terry Burger (non-voting)

ASSE International Cleveland, OH, USA

Ned Dickey

Hans Grohe Alpharetta, GA, USA

Chris Haldiman

Watts Water Technologies Springfield MO, USA

Herb Hoeptner

Hoeptner Preferred Products Gilroy, CA, USA

George Istefan

Watts Water Technologies Fontana, CA, USA

Cody Jackson

Woodford Manufacturing Company Colorado Springs, CO, USA

Duncan Liang

CSA Group Toronto, ON, Canada

Ramiro Mata

ASPE Mentor, OH, USA

Daniel Miller

Apollo

Pageland, SC, USA

John Nance

Prier Products Grandview, MO, USA

Anthony Stanaland

Jay R Smith

Montgomery, AL, USA

Tsan-Liang Su

Stevens Institute Hoboken, NJ, USA

Tom Valente

CSA Group

Cleveland, OH, USA

Contents

1.0	General							
	1.1	Application	1					
	1.2	Scope	1					
	1.3	Reference Standards	1					
2.0	Test Specimens & Test Laboratory							
	2.1	Samples Selection						
	2.2	Samples Tested	2					
	2.3	Documentation	2					
	2.4	Rejection	2					
3.0	Perfo	ormance Requirements and Compliance Testing	3					
	3.1	Hydrostatic Test of Complete Device	3					
	Figure	e 1	3					
	3.2	Flow Rates and Pressure Loss	3					
	Table	1	3					
	Figure	e 2	4					
	3.3	Deterioration at Maximum Rated Temperature and Pressure	4					
	3.4	Life Cycle Test	5					
	3.5	Resistance to Bending	5					
	Figure	6						
	3.6	Tightness of Outlet Check Valve	6					
	Figure	e 4	7					
	3.7	Tightness of Inlet Check Valve	7					
	3.8	Leakage from Vent Ports	8					
	3.9	Backflow Through Inlet Check Valve	8					
	Figure	e 5	8					
	3.10	Backflow Through Outlet Check Valve	9					
	3.11	Backsiphonage	9					
	Figure	10						
	Figure 7							
	3.12	Backsiphonage and Backpressure	11					
	Figure 8							
	3.13	Relief of Intermediate Chamber Pressure	12					
	Figure	e 9	12					
	3.14	Backflow Preventer Attachment Requirements	13					
4.0	Detailed Requirements							
	4.1	Materials	13					
	4.2	Instructions for Markings	14					
	4.3	Installation Instructions	14					
5.0	Defin	itions	14					

ASSE/ANSI 1052-2023

Hose Connection Backflow Preventers

1.0 General

1.1 Application

This standard establishes design requirements, basic performance requirements and test procedures for hose connection backflow preventers (herein referred to as the "device"). This device is designed to be installed on the discharge side of a hose threaded outlet on a water system. This two-check device protects against backflow, due to backsiphonage or low-head backpressure, and is field testable to certify protection under the high hazard conditions present at a hose threaded outlet. This device shall only be used on systems where there is low-head backpressure which does not exceed that generated by an elevated hose equal to or less than 10 feet (3.0 m) in height.

1.2 Scope

1.2.1 Description

A hose connection backflow preventer consists of two independent checks, force loaded or biased to a closed position, with an atmospheric vent located between the two check valves, which is force loaded or biased to an open position, and a means for attaching a hose.

1.2.2 Size Range

The device has male hose threaded outlets sized 1/2 NH, 3/4 NH or 1 NH. Inlets with hose threads are to be provided with a non-removable feature.

1.2.3 Pressure

The devices shall be designed for a working pressure of at least 125.0 psi (861.9 kPa).

1.2.4 Temperature Range

The devices shall be designed for flow temperatures of 33.0 °F to 140.0 °F (0.6 °C to 60.0 °C).

1.2.5 This device may not be subjected to more than 12 hours of continuous water pressure.

1.2.6 Atmospheric Vent

Atmospheric vent(s) (air inlets) are to be provided with a non-standard plumbing connection.

1.3 Reference Standards

ASME B1.20.7-1991 (R2018), Hose Coupling Screw Threads (Inch)