
IEEE Standard for Interval Arithmetic

Sponsored by the
IEEE Microprocessor Standards Committee

IEEE
3 Park Avenue
New York, NY 10016-5997
USA

IEEE Computer Society

IEEE Std 1788™-2015

IEEE Std 1788TM-2015

IEEE Standard for Interval Arithmetic

Sponsor

Microprocessor Standards Committee
of the
IEEE Computer Society

Approved 11 June 2015

IEEE-SA Standards Board

Abstract: This standard specifies basic interval arithmetic (IA) operations selecting and following one of the
commonly used mathematical interval models. This standard supports the IEEE 754TM floating-point formats of
practical use in interval computations. Exception conditions are defined, and standard handling of these conditions
is specified. Consistency with the interval model is tempered with practical considerations based on input from
representatives of vendors, developers and maintainers of existing systems.

The standard provides a layer between the hardware and the programming language levels. It does not mandate
that any operations be implemented in hardware. It does not define any realization of the basic operations as
functions in a programming language.

Keywords: arithmetic, computing, decoration, enclosure, hull, IEEE 1788TM, interval, operation, verified

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright c© 2015 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 30 June 2015. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers,
Incorporated.

PDF: ISBN 978-0-7381-9720-3 STD20228
Print: ISBN 978-0-7381-9721-0 STDPD20228

IEEE prohibits discrimination, harassment, and bullying.

For more information, visit http: // www. ieee. org/ web/ aboutus/ whatis/ policies/ p9-26. html .

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written

permission of the publisher.

http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices
and disclaimers, or a reference to this page, appear in all standards and may be found under the heading
“Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use,
are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards
Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consen-
sus development process, approved by the American National Standards Institute (“ANSI”), which brings
together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE
administers the process and establishes rules to promote fairness in the consensus development process, IEEE
does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of
any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards,
and expressly disclaims all warranties (express, implied and statutory) not included in this or any other
document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness
for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of
material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort.
IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related
to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon
his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as
appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE
standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH
DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event
that an IEEE standard is translated, only the English version published by IEEE should be considered the
approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Oper-
ations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees
and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia,
seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear

that his or her views should be considered the personal views of that individual rather than the formal
position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless
of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice
pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a
consensus of concerned interests, it is important that any responses to comments and questions also receive
the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards
Coordinating Committees are not able to provide an instant response to comments or questions except in
those cases where the matter has previously been addressed. For the same reason, IEEE does not respond
to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is
welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with
the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is
not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.
They are made available by IEEE and are adopted for a wide variety of both public and private uses. These
include both use, by reference, in laws and regulations, and use in private self-regulation, standardization,
and the promotion of engineering practices and methods. By making these documents available for use
and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the
documents.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy
portions of any individual standard for company or organizational internal use or individual, non-commercial
use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer
Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of
any individual standard for educational classroom use can also be obtained through the Copyright Clearance
Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years
old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of
some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that
they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://ieeexplore.
ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more information about
the IEEE SA or IEEEs standards development process, visit the IEEE-SA Website at http://standards.

ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL:
http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect
to the existence or validity of any patent rights in connection therewith. If a patent holder or patent
applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed
on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of
Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights
without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably
free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not re-
sponsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries
into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions
provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are
reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the
validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility.
Further information may be obtained from the IEEE Standards Association.

http://ieeexplore.ieee.org/xpl/standards.jsp
http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org
http://standards.ieee.org
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html

Participants

At the time this IEEE standard was completed, the Interval Standard Working Group had the following
membership:

Nathalie Revol, Chair
R. Baker Kearfott, Vice Chair and Acting Chair

William Edmonson, Secretary
J. Wolff von Gudenberg, Web Master

Guillaume Melquiond, Archivist
George Corliss, Voting Tabulator

John Pryce, Senior Technical Editor
Christian Keil, Deputy Technical Editor

Michel Hack, Vincent Lefèvre, Ian McIntosh, Dmitry Nadezhin,
Ned Nedialkov and J. Wolff von Gudenberg, Assistant Technical Editors

Alexandru Amaricai
Ayman Bakr
Ahmed Belhani
Gerd Bohlender
Gilles Chabert
Rudnei Dias da Cunha
Hend Dawood
Bo Einarsson
Alan Eliasen
Hossam A. H. Fahmy
Richard Fateman
Scott Ferson
Haitham Gad
Kathy Gerber
Alexandre Goldsztejn
Frederic Goualard
Michael Groszkiewicz
Mohamed Guerfel
Robert Hanek
Behnam Hashemi
Nathan Hayes
Oliver Heimlich
Timothy Hickey
Werner Hofschuster
Chenyi Hu
Trevor Jackson, III

Malgorzata Jankowska
Michel Kieffer
Walter Krämer
Vladik Kreinovich
Ulrich Kulisch
Dorina Lanza
David Lester
Dominique Lohez
Wolfram Luther
Amin Maher
Svetoslav Markov
Günter Mayer
Jean-Pierre Merlet
Jean-Michel Muller
Humberto Munoz
Jose Antonio Munoz
Kaori Nagatou
Mitsuhiro Nakao
Markus Neher
Marco Nehmeier
Diep Nguyen
Michael Nooner
Shinichi Oishi
Sylvain Pion
Antony Popov

Evgenija Popova
Tarek Raissi
Nacim Ramdani
Andreas Rauh
Gaby Dos Reis
Michael Schulte
Kyarash Shahriari
Stefan Siegel
Iwona Skalna
Mark Stadtherr
James Stine
Pipop Thienprapasith
Warwick Tucker
Alfredo Vaccaro
Maarten van Emden
Erik-Jan van Kampen
Van Snyder
Josep Vehi
Julio Villalba-Moreno
G. William Walster
Yan Wang
Lee Winter
Pierre-Alain Yvars
Sergei Zhilin
Mohamed Zidan
Dan Zuras

The working group wishes to record with regret the loss of two members. Antony Popov of Sofia University,
Bulgaria, died suddenly in 2012 at the young age of 49. Walter Krämer, of the Bergische Universität
Wuppertal, Germany, died in October 2014 at the age of 62. Despite illness, Walter had remained an active
participant until June 2014.

The following members of the individual balloting committee voted on this guide. Balloters may have voted
for approval, disapproval, or abstention.

Bakul Banerjee
Juan Carreon
Keith Chow
George Corliss
Hossam Fahmy
Andrew Fieldsend
Alexander Gelman
Frederic Goualard
Randall Groves
Michel Hack
Peter Harrod

Oliver Heimlich
Werner Hoelzl
Chenyi Hu
Piotr Karocki
Ralph Kearfott
Vladik Kreinovich
Vincent Lefevre
Vincent Lipsio
William Lumpkins
Guillaume Melquiond
James Moore

JeanMichel Muller
Dmitry Nadezhin
Marco Nehmeier
John Pryce
Nathalie Revol
Eugene Stoudenmire
Gerald Stueve
J. Wolff Von Gudenberg
Forrest Wright
Oren Yuen

When the IEEE-SA Standards Board approved this standard on 11 June 2015, it had the following member-
ship:

John Kulick, Chair
Jon Walter Rosdahl, Vice Chair
Richard H. Hulett, Past Chair

Konstantinos Karachalios, Secretary

Masayuki Ariyoshi
Ted Burse
Stephen Dukes
Jean-Philippe Faure
J. Travis Griffith
Gary Hoffman
Michael Janezic

Joseph L. Koepfinger*
David J. Law
Hung Ling
Andrew Myles
T. W. Olsen
Glenn Parsons
Ronald C. Petersen
Annette D. Reilly

Stephen J. Shellhammer
Adrian P. Stephens
Yatin Trivedi
Phillip Winston
Don Wright
Yu Yuan
Daidi Zhong

*Member Emeritus
Don Messina

IEEE-SA Content Production and Management

Jonathan Goldberg
IEEE-SA Operational Program Management

vii
Copyright c© 2015 IEEE. All rights reserved.

Introduction

This introduction is not part of IEEE Std 1788-2015, IEEE Standard for Interval Arithmetic.

This introduction explains some of the alternative interpretations, and sometimes competing objectives, that
influenced the design of this standard. Implementers should study it for a fuller understanding of the design
choices made in this standard among these interpretations and objectives. For more information on interval
computations, including history, applications and software, seea e.g. [B1, B14] and the references therein, and
also the interval computations web site [B5].

Mathematical context

Interval computation is a collaboration between human programmer and machine infrastructure which, cor-
rectly done, produces mathematically proven numerical results about continuous problems—for instance,
rigorous bounds on the global minimum of a function or the solution of a differential equation. It is part
of the discipline of “constructive real analysis.” In the long term, the results of such computations might
become sufficiently trusted to be accepted as contributing to legal decisions. The machine infrastructure acts
as a body of theorems on which the correctness of an interval algorithm relies, so it must be made as reliable
as is practical. In its logical chain are many links—hardware, underlying floating-point system, etc.—over
which this standard has no control. The standard aims to strengthen one specific link, by defining interval
objects and operations that are theoretically well-founded and practical to implement.

This document uses the standard notation [a, b] for “the interval between numbers a and b,” with various
detailed meanings depending on the underlying theory. The “classical” interval arithmetic (IA) of R.A. Moore
[B8] uses only bounded, closed, nonempty intervals in the real numbers R—that is, [a, b] = {x ∈ R |
a ≤ x ≤ b } where a, b ∈ R with a ≤ b. So, for instance, division by an interval containing 0 is not defined
in it. It was agreed early on that this standard should strictly extend classical IA in virtue of allowing an
interval to be unbounded or empty.

Beyond this, various extensions of classical IA were considered. One choice that distinguishes between
theories is: Are arithmetic operations purely algebraic, or do they involve topology? An example of the
latter is containment set (cset) theory [B13], which extends functions over the reals to functions over the
extended reals, e.g., sin(+∞) is the set of all possible limits of sinx as x → +∞, which is [−1, 1]. The
complications of this were deemed to outweigh the advantages, and it was agreed that operations should be
purely algebraic.

Another choice is: Is an interval a set—a subset of the number line—or is it something different? The
most widely used forms of IA are set-based and define an interval to be a set of real numbers [B10]. They
have established software to find validated solutions of linear and nonlinear algebraic equations, optimization
problems, differential equations, etc.

However, Kaucher IA and the nearly equivalent modal IA have significant applications. In the former, an
interval is formally a pair (a, b) of real numbers, which for a ≤ b is “proper” and identified with the normal
interval {x ∈ R | a ≤ x ≤ b }, and for a > b is “improper.” In the latter, an interval is a pair (X,Q), where
X is a normal interval and Q is a quantifier, either ∃ or ∀. At the time of writing, it finds commercial use in
the graphics rendering industry. Both forms are referred to as Kaucher IA henceforth.

In view of their significance, it was decided to support both set-based and Kaucher IA. Because of their
different mathematical bases, this led to the concept of flavors (see Clause 7). A flavor is a version of IA
that extends classical IA in a precisely defined sense, such that when only classical intervals and restricted
operations are used (avoiding, e.g., division by an interval containing zero), all flavors produce the same
results at the mathematical level and also—up to roundoff—in finite precision.

Currently, the standard includes only the set-based flavor. Among other possible flavors are Kaucher/modal
intervals; containment-sets; and the interval system of Siegfried Rump [B15], which handles the relation
between floating-point numbers and intervals, including overflow, in an elegant way, as well as being able to
support open and half-open intervals. All of these extend classical IA in the defined sense.

aThe numbers in brackets correspond to those of the bibliography in Annex A.

viii
Copyright c© 2015 IEEE. All rights reserved.

Clause 1 through Clause 9 contain a common set of definitions and requirements that apply to all flavors.
Clause 10 through Clause 14 contain the set-based flavor, in which:

– Intervals are subsets of the set R of real numbers. At the mathematical level (Level 1 in the structure defined
in Clause 5) they are precisely all topologically closed and connected subsets of R. The finite-precision
level (Level 2) uses the notion of an interval type, which is a finite set of Level 1 intervals.

– The interval version of an elementary function such as sinx is essentially the natural extension to sets of
the corresponding pointwise function on real numbers.

Fuzzy sets, like intervals, are a way to handle uncertain knowledge, and the two topics are related. However,
to consider this relation was beyond the scope of this project.

Specification levels

The floating-point standard IEEE Std 754TM-2008 describes itself as layered into four Specification Levels.
To manage complexity, the present standard uses a corresponding structure. It deals mainly with Level 1, of
mathematical interval theory, and Level 2, the finite set of interval datums in terms of which finite-precision
interval computation is defined. It has some concern with Level 3, of representations of intervals as data
structures; and with Level 4, of interchange encoding in bit strings.

There is another important player: the programming language. It was a recognized omission of the first
(1985) version of IEEE Std 754-2008 that it specified individual operations but not how they should be used
in expressions. Optimizing compilers have, since well before that standard, used clever transformations so
that it is impossible to know the precisions used and the roundings performed while evaluating an expression,
or whether the compiler has even “optimized away” (1.0 + x) − 1.0 to become simply x. The 2008 revision
specifies this by placing requirements on how operations should be used in expressions, though as of this
writing, few programming languages have adopted that.

The lack of any restrictions is also a problem for intervals. Thus the standard makes requirements and
recommendations on language implementations, thereby defining the notion of a standard-conforming imple-
mentation of intervals within a language.

The language does not constitute a fifth level in some linear sequence; from the user’s viewpoint, most
current languages sit above datum level 2, alongside theory level 1, as a practical means to implement
interval algorithms by manipulating Level 2 entities (though most languages have influence on Levels 3 and
4 also). This standard extends them to provide an instantiation of Level 2 entities.

The Fundamental Theorem

Moore’s [B8] Fundamental Theorem of Interval Arithmetic (FTIA) is central to interval computation. Roughly,
it says as follows. Let f be an explicit arithmetic expression—that is, it is built from finitely many elementary
functions (arithmetic operations) such as +,−,×,÷, sin, exp, . . ., with no non-arithmetic operations such as
intersection, so that it defines a real function f(x1, . . . , xn). Then evaluating f “in interval mode” over any
interval input box (x1, . . . ,xn) is guaranteed to enclose (i.e., give a set that contains) the range of f over
those inputs. Typically there are sub-cases, where extra conditions lead to stronger conclusions such as f
being continuous on the input box.

A version of the FTIA holds in all variants of interval theory, but with varying hypotheses and conclusions.
In the context of this standard, an expression should be evaluated entirely in one flavor, and inferences made
strictly from that flavor’s FTIA; otherwise, a user might believe an FTIA holds in a case where it does not,
with possibly serious effects in applications. As stated, the FTIA is about the mathematical level. Moore’s
achievements were to see that “outward rounding” makes the FTIA hold also in finite precision and to follow
through the consequences. An advantage of the level structure used by the standard is that the mapping
between Levels 1 and 2 defines a framework where it is easily proved that

Each flavor’s finite-precision FTIA holds in any conforming implementation.

Generally, during program execution it can only be decided after evaluating an expression whether the
conditions for any sub-case of the FTIA hold. The purpose of each flavor’s decoration system is to make such
decisions computable, see 6.4 and Clause 7.

ix
Copyright c© 2015 IEEE. All rights reserved.

For the set-based flavor, see [B12] for background on its decoration system, 6.4 for a statement of its FTIA,
and Annex B for a statement and proof of its FTDIA.

Operations

There are several interpretations of evaluation outside an operation’s domain and operations as relations
rather than functions. This includes classical alternative meanings of division by an interval containing zero,
or square root of an interval containing negative values. To illustrate the different interpretations, consider
y =
√
x where x = [−1, 4].

a) In optimization, when computing lower bounds on the objective function, it is generally appropriate to
return the result y = [0, 2], and ignore the fact that

√
· has been applied to negative elements of x.

b) In applications (such as solving differential equations) where one must check whether the hypotheses of a
fixed point theorem are satisfied:

1) one might need to be sure that the function is defined and continuous on the input and, hence, report
an illegal argument when, as in the above case, this fails; or

2) one might need the result y = [0, 2], but must flag the fact that
√
· has been evaluated at points where

it is undefined or not continuous.

c) In constraint propagation, the equation is often to be interpreted as: find an interval enclosing all y such
that y2 = x for some x ∈ [−1, 4]. In this case the answer is [−2, 2].

The standard provides means to meet these diverse needs, while aiming to preserve clarity and efficiency.
A language might achieve this by binding one of the above three interpretations—usually some variant of
b)—to its built-in operations, and providing the others as library procedures.

In the context of flavors, a key idea is that of common operation instances: those elementary interval cal-
culations that at the mathematical level are required to give the same result in all flavors. For example
[1, 2]/[3, 4] = [1/4, 2/3] is common, while division by an interval containing zero is not common.

Decorations

Many interval algorithms are only valid if certain mathematical conditions are satisfied: for instance, one
might need to know that a function f , defined by an expression, is everywhere continuous on a box in Rn
defined by n input intervals x1, . . . ,xn. The IEEE 754 use of global flags to record events such as division
by zero was considered inadequate in an era of massively parallel processing. In this standard, such events
are recorded locally by decorations.

A decorated interval is an ordinary interval tagged with a few bits that encode the decoration. A small number
of decorations is provided, designed for efficient propagation of such property information. For instance, if
evaluation outputs an interval y with the dac decoration, then f is defined and continuous on its input
box, with range contained in y. This allows a rigorous check, for instance, that the conditions for applying
a fixed-point theorem hold. Depending on need, a programmer may use bare (undecorated) intervals, or
decorated intervals, or (if provided) the optional compressed decorated interval arithmetic that offers less
decoration capability in exchange for faster execution.

The Basic standard

To make the standard more accessible and speed up production of implementations, a subset of the set-
based standard called the Basic Standard for Interval Arithmetic (BSIA) has been written. It includes just
one finite-precision interval type—intervals whose endpoints are IEEE 754 binary64 numbers—and those
operations that in the editors’ view are most commonly used. A minimal implementation of the BSIA is not
a conforming implementation of the full standard since some required operations of the latter are omitted or
provided in a restricted form. However a program that runs using such an implementation should run, and
give identical output within roundoff, using an implementation of the full standard. At the time of writing
a project is underway to issue the BSIA as a separate IEEE standard.

x
Copyright c© 2015 IEEE. All rights reserved.

Contents

Part 1. General Requirements 2
1. Overview 2
1.1. Scope 2
1.2. Purpose 2
1.3. Inclusions 2
1.4. Exclusions 2
1.5. Word usage 3
1.6. The meaning of conformance 3
1.7. Programming environment considerations 3
1.8. Language considerations 4
2. Normative references 4
3. Notation, abbreviations, and special terms 5
3.1. Frequently used notation and abbreviations 5
3.2. Special terms 5
4. Conformance 10
4.1. Conformance overview 10
4.2. Set-based interval arithmetic 11
4.2.1. IEEE 754 conformance 11
4.2.2. Compressed decorated interval arithmetic 11
4.3. Conformance claim 11
4.4. Implementation conformance questionnaire 12
5. Structure of the standard in levels 13
6. Functions and expressions 14
6.1. Function definitions 14
6.2. Expression definitions 15
6.3. Function libraries 17
6.4. The FTIA 18
6.5. Related issues 19
7. Flavors 19
7.1. Flavors overview 19
7.2. Flavor basic properties 20
7.3. Common evaluations 21
7.4. Primary versions and Level 1 interval versions 21
7.4.1. Arithmetic operations 21
7.4.2. Nonarithmetic operations required in all flavors 22
7.4.3. Flavor-defined nonarithmetic operations 22
7.5. The relation of Level 1 to Level 2 22
7.5.1. Types 23
7.5.2. Hull 23
7.5.3. Level 2 operations 23
7.5.4. Measures of accuracy 24
8. Decoration system 25
8.1. Decorations overview 25
8.2. Decoration definition and propagation 26
8.3. Recognizing common evaluation 26
9. Operations and related items required in all flavors 27
9.1. Arithmetic operations 27
9.2. Cancellative addition and subtraction 29
9.3. Set operations 29
9.4. Numeric functions of intervals 29
9.5. Boolean functions of intervals 29
9.6. Operations on/with decorations 29
9.7. All-flavor interval and number literals 30

xi
Copyright c© 2015 IEEE. All rights reserved.

9.7.1. Overview 30
9.7.2. All-flavor number literals 31
9.7.3. Unit in last place 31
9.7.4. All-flavor bare interval literals 31
9.7.5. All-flavor decorated interval literals 31
9.7.6. Grammar for all-flavor literals 32
9.8. Constructors 32

Part 2. Set-Based Intervals 34
10. Level 1 description 34
10.1. Non-interval Level 1 entities 34
10.2. Intervals 34
10.3. Hull 35
10.4. Functions and expressions 35
10.5. Required operations 36
10.5.1. Interval literals 36
10.5.2. Interval constants 36
10.5.3. Forward-mode elementary functions 36
10.5.4. Reverse-mode elementary functions 36
10.5.5. Two-output division 37
10.5.6. Cancellative addition and subtraction 38
10.5.7. Set operations 38
10.5.8. Constructors 38
10.5.9. Numeric functions of intervals 39
10.5.10. Boolean functions of intervals 39
10.6. Recommended operations 40
10.6.1. Forward-mode elementary functions 40
10.6.2. Slope functions 41
10.6.3. Boolean functions of intervals 41
10.6.4. Extended interval comparisons 41
11. The decoration system at Level 1 44
11.1. Decorations and decorated intervals overview 44
11.2. Definitions and basic properties 44
11.3. The ill-formed interval 45
11.4. Permitted combinations 45
11.5. Operations on/with decorations 45
11.5.1. Initializing 45
11.5.2. Disassembling and assembling 46
11.5.3. Comparisons 46
11.6. Decorations and arithmetic operations 46
11.7. Decoration of non-arithmetic operations 47
11.7.1. Interval-valued operations 47
11.7.2. Non-interval-valued operations 47
11.8. User-supplied functions 47
11.9. Notes on the com decoration 48
11.10. Compressed arithmetic with a threshold (optional) 49
11.10.1. Motivation 49
11.10.2. Compressed interval types 49
11.10.3. Operations 50
12. Level 2 description 51
12.1. Level 2 introduction 51
12.1.1. Types and formats 51
12.1.2. Operations 51
12.1.3. Exception behavior 52

xii
Copyright c© 2015 IEEE. All rights reserved.

12.2. Naming conventions for operations 52
12.3. Tagging, and the meaning of equality at Level 2 52
12.4. Number formats 53
12.5. Bare and decorated interval types 54
12.5.1. Definition 54
12.5.2. Inf-sup and mid-rad types 55
12.6. 754-conformance 55
12.6.1. Definition 55
12.6.2. 754-conforming mixed-type operations 55
12.7. Multi-precision interval types 55
12.8. Explicit and implicit types, and Level 2 hull operation 56
12.8.1. Hull in one dimension 56
12.8.2. Hull in several dimensions 56
12.9. Level 2 interval extensions 56
12.10. Accuracy of operations 57
12.10.1. Measures of accuracy 57
12.10.2. Accuracy requirements 58
12.10.3. Documentation requirements 58
12.11. Interval and number literals 58
12.11.1. Overview 58
12.11.2. Number literals 58
12.11.3. Bare intervals 59
12.11.4. Decorated intervals 59
12.11.5. Grammar for portable literals 59
12.12. Required operations on bare and decorated intervals 60
12.12.1. Interval constants 60
12.12.2. Forward-mode elementary functions 61
12.12.3. Two-output division 61
12.12.4. Reverse-mode elementary functions 61
12.12.5. Cancellative addition and subtraction 61
12.12.6. Set operations 62
12.12.7. Constructors 62
12.12.8. Numeric functions of intervals 63
12.12.9. Boolean functions of intervals 64
12.12.10. Interval type conversion 65
12.12.11. Operations on/with decorations 65
12.12.12. Reduction operations 65
12.13. Recommended operations 66
12.13.1. Forward-mode elementary functions 66
12.13.2. Slope functions 66
12.13.3. Boolean functions of intervals 66
12.13.4. Extended interval comparisons 66
12.13.5. Exact reduction operations 66
13. Input and output (I/O) of intervals 67
13.1. Overview 67
13.2. Input 67
13.3. Output 67
13.4. Exact text representation 68
13.4.1. Conversion of IEEE 754 numbers to strings 69
13.4.2. Exact representations of comparable types 70
14. Levels 3 and 4 description 70
14.1. Overview 70
14.2. Representation 70
14.3. Operations and representation 71

xiii
Copyright c© 2015 IEEE. All rights reserved.

14.4. Interchange representations and encodings 71

Annex A. Bibliography (informative) 74

Annex B. The fundamental theorem of decorated interval arithmetic for the set-based flavor
(informative) 76

B1. Preliminaries 76
B2. The theorem 78

xiv
Copyright c© 2015 IEEE. All rights reserved.

IEEE Standard for Interval Arithmetic

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, secu-
rity, health, or environmental protection, or ensure against interference with or from other
devices or networks. Implementers of IEEE Standards documents are responsible for determin-
ing and complying with all appropriate safety, security, environmental, health, and interference
protection practices and all applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal dis-
claimers. These notices and disclaimers appear in all publications containing this document
and may be found under the heading Important Notice or Important Notices and Disclaimers
Concerning IEEE Documents. They can also be obtained on request from IEEE or viewed at
http: // standards. ieee. org/ IPR/ disclaimers. html .

1

http://standards.ieee.org/IPR/disclaimers.html

IEEE Std 1788-2015
IEEE Standard for Interval Arithmetic

PART 1

General Requirements

1. Overview

1.1 Scope

This standard specifies basic interval arithmetic (IA) operations selecting and following one of the commonly
used mathematical interval models. This standard supports the IEEE 754TM floating-point formats of practi-
cal use in interval computations. Exception conditions are defined, and standard handling of these conditions
is specified. Consistency with the interval model is tempered with practical considerations based on input
from representatives of vendors, developers and maintainers of existing systems.

The standard provides a layer between the hardware and the programming language levels. It does not
mandate that any operations be implemented in hardware. It does not define any realization of the basic
operations as functions in a programming language.

1.2 Purpose

The aim of the standard is to improve the availability of reliable computing in modern hardware and software
environments by defining the basic building blocks needed for performing interval arithmetic. There are
presently many systems for interval arithmetic in use; lack of a standard inhibits development, portability,
and ability to verify correctness of codes.

1.3 Inclusions

This standard specifies

– Types for interval data based on underlying numeric formats, with a special class of type derived from
IEEE 754 floating-point formats.

– Constructors for intervals from numeric and character sequence data.

– Addition, subtraction, multiplication, division, fused multiply add, square root; other interval-valued op-
erations for intervals.

– Midpoint, radius and other numeric functions of intervals.

– Interval comparison relations and other boolean functions of intervals.

– Elementary interval functions of intervals.

– Conversions between different interval types.

– Conversions between interval types and external representations as text strings.

– Interval-related exceptional conditions and their handling.

1.4 Exclusions

This standard does not specify

– Which numeric formats supported by the underlying system shall have an associated interval type.

– How (for implementations supporting IEEE 754 arithmetic) operations act on the IEEE 754 status flags.

– How an implementation represents intervals at the level of programming language data types or bit patterns.

2
Copyright c© 2015 IEEE. All rights reserved.

