Language:
    • Available Formats
    •  
    • Availability
    • Priced From ( in USD )
    • Printed Edition
    • Ships in 1-2 business days
    • $85.00
    • Add to Cart

Customers Who Bought This Also Bought

 

About This Item

 

Full Description

This paper shows the latest progress in steel grades and in case hardening technology for gear components.

To answer the demand for fuel-efficient vehicles, modern gear boxes are built much lighter. Improving fatigue resistance is a key factor to allow for the design of thin components to be used in advanced vehicle transmissions. The choice of material and the applied heat treat process are of key importance to enhance the fatigue resistance of gear components.

By applying the technology of Low Pressure Carburizing (LPC) and High Pressure Gas Quenching (HPGQ), the tooth root bending strength can be significantly enhanced, compared to traditional heat treatment with atmospheric carburizing and oil quenching.

Besides heat treatment, significant progress has been made over the past years on the steels being used for gear components. The hardenability of case hardening steels such as 5130H, 5120H, 20MnCr5, 27MnCr5, 18CrNiMo7-6 etc. has been stepwise increased in recent years. An important factor for fatigue resistance is the grain size after heat treatment. Therefore, grain size control is a key goal when developing new modifications of steel grades.

After enhancing grain size control, it was possible to increase the carburizing temperatures over the past years from 930°C to 980°C (1700°F to 1800°F) which resulted in shorter heat treatment cycles and thus in significant cost savings.

With the introduction of new microalloyed steels for grain size stability, carburizing temperatures can now be even further increased to temperatures of up to 1050°C (1920°F), leading to even more economic process cycles. By adding microelements such as Niobium or Titanium in the ppm-range, nitride and carbonitride-precipitates are formed. These precipitates effectively limit the grain-growth during the heat treatment process.